
http://www.ixsystems.com/

TrueNAS™ 2U Pro
Key FeATUreS

 . Supports One or Two Quad-Core or Six-
 Core, Intel® Xeon® Processor 5600 Series
 . 12 Hot-Swap Drive Bays - Up to 36TB of
 Data Storage Capacity*
 . Periodic Snapshots Feature Allows You
 to Restore Data from a Previously
 Generated Snapshot
 . Remote Replication Allows You to
 Copy a Snapshot to an Offsite Server,
 for Maximum Data Security
 . Up to 4.48TB of Fusion-io Flash
 Memory
 . 2 x 1GbE Network Interface (Onboard)
 + Up to 4 Additional 1GbE Ports or
 Single/Dual Port 10GbE Network Cards

TrueNAS™ 4U Pro
Key FeATUreS

 . Supports One or Two Quad-Core or Six-
 Core, Intel® Xeon® Processor 5600 Series
 . 24 or 36 Hot-Swap Drive Bays - Up to
 108TB of Data Storage Capacity*
 . Periodic Snapshots Feature Allows You
 to Restore Data from a Previously
 Generated Snapshot
 . Remote Replication Allows You to
 Copy a Snapshot to an Offsite Server,
 for Maximum Data Security
 . Up to 14.08TB of Fusion-io Flash
 Memory
 . 2 x 1GbE Network Interface (Onboard)
 + Up to 4 Additional 1GbE Ports or
 Single/Dual Port 10GbE Network Cards

JBoD expansion is available on the
2U and 4U Pro Systems

* 2.5” drive options available; please
consult with your Account Manager

Storage. Speed. Stability.

In order to achieve maximum performance, the TrueNAS™
Pro 2U and 4U Systems, equipped with the Intel® Xeon®
Processor 5600 Series, support Fusion-io’s Flash Memory
cards and 10GbE Network Cards. Titan TrueNAS™ Pro 2U and
4U Appliances are an excellent storage solution for video
streaming, file hosting, virtualization, and more. Paired with
optional JBOD expansion units, the TrueNAS™ Pro Systems
offer excellent capacity at an affordable price.

For more information on the TrueNAS™ 2U Pro and
TrueNAS™ 4U Pro, or to request a quote, visit:
http://www.iXsystems.com/TrueNAS.

TrueNAS™ Pro Storage Appliance:
You are the Cloud

With a rock-solid FreeBSD® base, Zettabyte File System support, and a powerful Web GUI, TrueNAS™

Pro pairs easy-to-manage software with world-class hardware for an unbeatable storage solution.

Expansion
Shelves

Available

Call iXsystems toll free or visit our website today!
1-855-GREP-4-IX | www.iXsystems.com
Intel, the Intel logo, Xeon, and Xeon Inside are trademarks or registered trademarks of Intel Corporation in the U.S. and/or other countries.

TrueNAS™ 2U Pro System

Clone
Snapshot

All
Volumes

Create Periodic Snapshot

TrueNAS™ 4U Pro System

http://www.ixsystems.com/

TrueNAS™ 2U Pro
Key FeATUreS

 . Supports One or Two Quad-Core or Six-
 Core, Intel® Xeon® Processor 5600 Series
 . 12 Hot-Swap Drive Bays - Up to 36TB of
 Data Storage Capacity*
 . Periodic Snapshots Feature Allows You
 to Restore Data from a Previously
 Generated Snapshot
 . Remote Replication Allows You to
 Copy a Snapshot to an Offsite Server,
 for Maximum Data Security
 . Up to 4.48TB of Fusion-io Flash
 Memory
 . 2 x 1GbE Network Interface (Onboard)
 + Up to 4 Additional 1GbE Ports or
 Single/Dual Port 10GbE Network Cards

TrueNAS™ 4U Pro
Key FeATUreS

 . Supports One or Two Quad-Core or Six-
 Core, Intel® Xeon® Processor 5600 Series
 . 24 or 36 Hot-Swap Drive Bays - Up to
 108TB of Data Storage Capacity*
 . Periodic Snapshots Feature Allows You
 to Restore Data from a Previously
 Generated Snapshot
 . Remote Replication Allows You to
 Copy a Snapshot to an Offsite Server,
 for Maximum Data Security
 . Up to 14.08TB of Fusion-io Flash
 Memory
 . 2 x 1GbE Network Interface (Onboard)
 + Up to 4 Additional 1GbE Ports or
 Single/Dual Port 10GbE Network Cards

JBoD expansion is available on the
2U and 4U Pro Systems

* 2.5” drive options available; please
consult with your Account Manager

Storage. Speed. Stability.

In order to achieve maximum performance, the TrueNAS™
Pro 2U and 4U Systems, equipped with the Intel® Xeon®
Processor 5600 Series, support Fusion-io’s Flash Memory
cards and 10GbE Network Cards. Titan TrueNAS™ Pro 2U and
4U Appliances are an excellent storage solution for video
streaming, file hosting, virtualization, and more. Paired with
optional JBOD expansion units, the TrueNAS™ Pro Systems
offer excellent capacity at an affordable price.

For more information on the TrueNAS™ 2U Pro and
TrueNAS™ 4U Pro, or to request a quote, visit:
http://www.iXsystems.com/TrueNAS.

TrueNAS™ Pro Storage Appliance:
You are the Cloud

With a rock-solid FreeBSD® base, Zettabyte File System support, and a powerful Web GUI, TrueNAS™

Pro pairs easy-to-manage software with world-class hardware for an unbeatable storage solution.

Expansion
Shelves

Available

Call iXsystems toll free or visit our website today!
1-855-GREP-4-IX | www.iXsystems.com
Intel, the Intel logo, Xeon, and Xeon Inside are trademarks or registered trademarks of Intel Corporation in the U.S. and/or other countries.

TrueNAS™ 2U Pro System

Clone
Snapshot

All
Volumes

Create Periodic Snapshot

TrueNAS™ 4U Pro System

http://www.ixsystems.com/

08/20114

CONTENTS

Zbigniew Puchciński
Editor in Chief

zbigniew.puchcinski@software.com.pl

Editor in Chief:
Zbigniew Puchciński

 zbigniew.puchcinski@software.com.pl

Contributing:
Dru Lavigne, Justin C. Sherrill, Martin Matuška, Juraj Sipos,

Rob Somerville, Paul T. Ammann, Antoine Bouthors, Jim Brown

Proofreaders:
Sander Reiche, Tristan Karstens

Special Thanks:
Denise Ebery

Art Director:
Ireneusz Pogroszewski

DTP:
Ireneusz Pogroszewski

Senior Consultant/Publisher:
Paweł Marciniak pawel@software.com.pl

CEO:
Ewa Dudzic

ewa.dudzic@software.com.pl

Production Director:
Andrzej Kuca

andrzej.kuca@software.com.pl

Executive Ad Consultant:
Ewa Dudzic

ewa.dudzic@software.com.pl

Advertising Sales:
Zbigniew Puchciński

zbigniew.puchcinski@software.com.pl

Publisher :
Software Press Sp. z o.o. SK

ul. Bokserska 1, 02-682 Warszawa
Poland

worldwide publishing
tel: 1 917 338 36 31
www.bsdmag.org

Software Press Sp z o.o. SK is looking for partners from all over
the world. If you are interested in cooperation with us, please

contact us via e-mail: editors@bsdmag.org

All trade marks presented in the magazine were used only for
informative purposes. All rights to trade marks presented in the

magazine are reserved by the companies which own them.

The editors use automatic DTP system

Mathematical formulas created by Design Science MathType™.

Dear Readers,
Let me introduce you to the the new – August issue of
BSD magazine.

This months cover story is focused on Memory File
Systems and FreeBSD. Juraj Sipos shows us how to
make your own FreeBSD in MFS, which will allow you
to make a bootable USB stick or disc.
Martin Matuska touches the topic from a slightly
different angle and presents us with mfsBSD – a
small but great toolset you can use for your mfsroot.

We will also dig deeper into the FreeNAS 8
con�guration and use in the article written by Dru
Lavigne, explore new options of GIS in third part of
Rob Somerville series, and �nd Paul Ammann’s tips
to avoid potential security problems with IPv6.

In ‘Let’s Talk’ section Antoine Jacoutot will tell us
about challenges of porting GNOME3 to OpenBSD.
You will also �nd a third part of Jim Brown’s
Certi�cation Series there.

We wish you to enjoy the reading and remember to
share your thoughts with us!

Thank you.

Contents

we configured Geoserver andPostgres with PostGIS
extensions to serve our map data.

Tips and Tricks
IPv6: Open with Care
Paul T. Ammann

Despite the promise of improved security, the move to the
next-generation Internet protocols will create short-term
problems for your network. Here are six tips to keep in
mind in planning your transition to Ipv6

Let’s Talk
Puffy The Hobbit – The Challenge of
Porting GNOME 3 to OpenBSD
Antoine Jacoutot

After a recent proposal from Lennart Poettering for
GNOME to include more Linux specific technologies
like systemd (and basically become a Linux-based OS),
I thought it would be interesting to show some of the
challenges and constant battle that is to port this Desktop
to BSD systems and more specifically OpenBSD.

What It Takes Starting and Running an
Open Source Certification Program,
Part III
Jim Brown

This is the third part in our series on what it takes to run an
Open Source Certification Program. In Part I we discussed
“People”, the kinds of people you will need to help you run
a Certification Program for your most excellent software.

Get Started
Getting Started with FreeNAS™ 8.0.1
Dru Lavigne

This article provides a big picture overview of the steps
that are performed when configuring a FreeNAS™ 8
storage appliance. Subsequent articles will demonstrate
specific configuration scenarios.

Developers Corner
Your BSD ‘App Store’ with pbulk:
Building everything in pkgsrc with
automation using DragonFlyBSD
Justin C. Sherrill

The „app store” concept seemingly is the latest fad with
Apple, Google, Amazon, Valve and so on. Each of them
creating individual platforms for moving software to
incidental customer gadgets completely through electronic
download. Well, as with many other technologies, a
pioneer of this software technology trend first showed up
as an open source concept.

How To’s
mfsBSD – The Swiss Army Knife for
FreeBSD system administrators
Martin Matuška

mfsBSD is a toolset to create small-sized but full-featured
mfsroot based distributions of FreeBSD that store all files
in memory (MFS) and load from hard drive, usb storage
device, optical media or network.

How To Make Memory File System In
FreeBSD
Juraj Sipos

Memory File System is a very good option for your own –
customized FreeBSD system. Soon after FreeBSD CD (or
USB) boots with MFS, it loads all the necessary files from
the root directory in memory the same way as if these
files were in the root directory on your hard disk (usually
/dev/ad0s1a).

Manipulating map data using QGIS
Rob Somerville

In this article, we will examine how to create and
manipulate shapefiles. In the previous two articles

06

12

16

36

22

28

40

46

08/2011 6

GET STARTED Getting Started with FreeNAS™ 8.0.1

www.bsdmag.org 7

The graphical administrative interface used by
FreeNAS™ was redesigned in version 8. If
you are used to the .7 interface, this article will

demonstrate where to perform configuration tasks using
the new interface. If you are new to FreeNAS™, this
article will provide you with the workflow that is used when
configuring a FreeNAS™ system.

Once FreeNAS™ has been installed and you have
logged into the FreeNAS™ administrative interface, the
basic configuration workflow is as follows:

• Determine the type of share or service that will
be used to provide storage to the clients in the
network.

• Create volumes or datasets; in other words, setup the
storage disks.

• Create users and groups.
• Assign permissions.
• Configure the share or service.
• Start the service.
• Test the configuration.

An overview of each of these steps is provided.

Installation and Initial Setup
As of this writing, the most recent version of FreeNAS™
is 8.0.1-BETA4. This version is recommended over 8.0-
RELEASE as it addresses many of the bugs reported

by the community and adds additional features such as
cron jobs, rsync, S.M.A.R.T, and UPS support. You can
download FreeNAS™ 8.0.1 from https://sourceforge.net/
projects/freenas/files/FreeNAS™-8.0.1/.

In order to install FreeNAS™, you’ll need a USB stick of
at least 2 GB in size and a system with at least one hard
disk. A minimum of 4 GB of RAM is recommended. A more
complete description of the hardware requirements can
be found at http://doc.freenas.org/index.php/Hardware_
Requirements.

The easiest way to install is to download the .iso for your
architecture (32- or 64-bit), burn the ISO to a CDROM, and
boot from the CDROM to start the installation program.
Once the installation menu appears, press enter to select
the default option of 1 Install/Upgrade to hard drive/flash
device, etc. The installer will then display all possible disk
media available on the system. In the example shown in
Figure 1, FreeNAS™ is being installed into VirtualBox
which has been prepared with a 4GB virtual disk to hold

Getting Started with
FreeNAS™ 8.0.1
This article provides a big picture overview of the steps
that are performed when configuring a FreeNAS™ 8 storage
appliance. Subsequent articles will demonstrate specific
configuration scenarios.

What you will learn…
• which sharing services are available in FreeNAS™
• which �lesystems and RAID levels are supported by FreeNAS™
• where to create users and setup permissions in FreeNAS™

What you should know…
• what a NAS (network attached storage) is used for

Figure 1. Choosing Where to Install FreeNAS™

https://sourceforge.net/projects/freenas/files/FreeNAS�-8.0.1/
https://sourceforge.net/projects/freenas/files/FreeNAS�-8.0.1/
http://doc.freenas.org/index.php/Hardware_Requirements
http://doc.freenas.org/index.php/Hardware_Requirements

08/2011 6

GET STARTED Getting Started with FreeNAS™ 8.0.1

www.bsdmag.org 7

AFP
FreeNAS™ uses Netatalk to provide sharing services to
Apple clients. This type of share is a good choice if all of
your computers run Mac OS X.

CIFS
FreeNAS™ uses Samba to provide the SMB/CIFS sharing
service. This type of share is accessible by Windows, Mac
OS X, Linux, and BSD computers, but it is slower than
an NFS share. If your network contains only Windows
systems, this is a good choice.

NFS
This type of share is accessible by Mac OS X, Linux, BSD,
and professional/enterprise versions of Windows. It is a
good choice if there are many different operating systems
in your network.

FTP
This service provides fast access from any operating
system, using a cross-platform FTP and file manager
client application such as Filezilla. FreeNAS™ supports
encryption and chroot for FTP.

SSH
This service provides encrypted connections from any
operating system using SSH command line utilities or the
graphical WinSCP application for Windows clients.

iSCSI
FreeNAS™ uses istgt to export disk drives that are
accessible by clients running iSCSI initiator software.

Creating Volumes and Datasets
When configuring the data storage disks, FreeNAS™
supports the following:

the operating system and a 20GB virtual disk to provide
data storage. Typically, one would install FreeNAS™ onto
a USB stick – be sure not to install onto a disk drive as
the operating system will take over that disk, making it
unavailable for data storage, regardless of the disk’s
size.

Once you select where to install FreeNAS™, you’ll
receive a warning message reminding you that any
existing data on the destination media will be destroyed.
Once you confirm your selection, the installer will extract
the image to the device and indicate when you can reboot.
The entire installation takes only a few minutes.

The first time you boot into FreeNAS™, make sure that
it is connected to the network. It will automatically try to
obtain an IP address from a DHCP server and will indicate
its IP address, as seen Figure 2.

In this example, typing http://10.0.2.15 into a web
browser will access the FreeNAS™ graphical login. Input
admin for the username and freenas for the password. You
should then have access to the graphical configuration
interface shown in Figure 3.

Since the initial FreeNAS™ password is a known value,
you should change it by going to Account->My Account->
Change Password.

Determining Which Type of Share or Service to
Configure
FreeNAS™ supports several types of shares and sharing
services for providing storage data to the clients in a
network. It is recommended that you select only one type
to configure in order to prevent possible conflicts between
different types of shares. The type of share you choose
will depend upon the types of operating systems in your
network, your security needs, and your expectations
for network transfer speeds. You can choose from the
following types of shares and services:

Figure 2. FreeNAS™ Graphical Con�guration InterfaceFigure 2. Determining the IP Address

08/2011 8

GET STARTED Getting Started with FreeNAS™ 8.0.1

www.bsdmag.org 9

• create a new volume
• create a new ZFS dataset
• create a new ZFS volume (zvol)
• import a volume
• auto import a volume

If a ZFS volume has been created, it will contain 6
configuration icons specific to that volume. They allow
you to (reading from left to right):

• destroy the volume and all of its data
• edit ZFS options such as compression level and disk

quota
• change permissions to the volume
• create a ZFS snapshot
• view the disks that comprise the volume; for each disk

you can view its device name, serial number, device
ID, tranfer mode, standby mode, power management,
acoustic level, and S.M.A.R.T options

• export the ZFS volume

More information about volume management can be
found at http://doc.freenas.org/index.php/Volumes.

Creating Users and Groups
FreeNAS™ supports a variety of user access scenarios:

• the use of an anonymous or guest account that
everyone in the network uses to access the stored
data

• the creation of individual user accounts where each
user has access to their own ZFS dataset

• the addition of individual user accounts to groups
where each group has access to their own volume or
ZFS dataset

• support for existing accounts through the OpenLDAP
or Active Directory directory service

When configuring your FreeNAS™ system, you need
to decide how many users will be accessing the
system and if all of the data should be accessible to
all of the users. For example, if your home network
uses FreeNAS™ to store photos and home videos,
you may decide to create a guest account that is used
by all family members. This is very easy to setup as it
only requires the creation of one volume and one user
account. If you require a more complex scenario you
will need to create the required number of volumes/
datasets and user accounts.

User accounts are created in Account->Users->Add
User. This opens the screen shown in Figure 5.

• The creation of UFS and ZFS volumes.
• The ability to import existing UFS, NTFS, MSDOS,

and EXT2 volumes.
• The ability to create or import existing UFS gstripe

(RAID0), gmirror (RAID1), and graid3 (RAID3)
configurations.

• The ability to create or import existing ZFS RAIDs 0,
1, 5, 10, 60 and RAIDZ1 configurations.

• The ability to create ZFS datasets. Each dataset
can be assigned its own user/group, compression
level, and disk quota, allowing for complex sharing
scenarios.

• The ability to create ZFS zvols. A zvol allows a portion
of a volume to be exported as an iSCSI device extent
rather than having to export the entire raw disk.

• The ability to create ZFS snapshots which can be
used to restore the volume to a specific point in
time.

• The ability to prepare a ZFS volume (export) so that it
can be removed and installed into another system.

All disk and volume management can be performed in
Storage->Volumes. Figure 4 shows a screenshot of this
menu on a system that has one ZFS volume already
created.

In the tree menu in the left frame, one can:

• change the permissions of an existing volume
• auto import an existing software RAID
• create a new UFS or ZFS volume with or without

RAID
• create a ZFS dataset (requires a ZFS volume to be

created first)
• import a disk containing an existing filesystem
• view all configured volumes

Several configuration icons appear in the right frame.
The top 5 icons allow you to (from left to right):

Figure 4. Volume Management Screen

http://doc.freenas.org/index.php/Volumes

08/2011 8

GET STARTED Getting Started with FreeNAS™ 8.0.1

www.bsdmag.org 9

When creating a user account, keep the following points
in mind:

• the user ID will be automatically generated and can
be left as-is

• the username can be descriptive (e.g. guest, anony-
mous, ftp) or should match an existing username on a
client operating system

• the primary group should be left blank as this will
create a group with the same name as the username;
if you wish to add users to groups in order to manage
permissions, use Account->Groups to create custom
groups and add existing users as members of your
custom groups

• permissions will not work if you do not change the
default home directory; the home directory needs to
be changed to the path of the volume or dataset that
you wish the user to have access to (e.g. /mnt/volume1
in the example shown in Figure 4)

• the shell can be left as-is unless the user will be
logging in and has a shell preference

• the full name can either be a description (e.g.
anonymous access) or the user’s full name

• if the user is to have login access, input and confirm
their password; otherwise, check the box to disable
logins

Setting Permissions
Once you have created your volumes/datasets and users/
groups, you need to associate each volume or dataset
with the users/groups that will have permission to the data
stored on that volume/dataset.

To do so, go to Storage->Volumes->View All Volumes.
Click the permissions icon for the volume or dataset that
you wish to configure. This will open the screen shown in
Figure 6.

Check that the owner for both user and group is
correct and review the mode to ensure that the desired
permissions are checked. FreeNAS™ supports both Unix
ACLs, which are understood by all operating systems,
and Windows ACLs which add a superset of permissions
to the Unix ACLs but are only understood by Windows
systems.

The only time you should change to Windows ACLs
is when your entire network is comprised of Windows
operating systems.

You should check the set permission recursively box to
ensure that your selected permissions are inherited by all
subdirectories within the volume/dataset.

Creating Shares and Configuring Services
Once your volumes have been configured with
permissions, you are ready to configure the type of share
or service that you determine is suitable for your network.
The locations within the administrative interface and the
documentation for setting the various types of shares and
services are as follows:

• AFP shares are configured in Sharing->AFP Shares-
>Add AFP Share and are described at http://
doc.freenas.org/index.php/AFP_Shares

• CIFS shares are configured in Sharing->CIFS
Shares->Add CIFS Share and are described at http://
doc.freenas.org/index.php/CIFS_Shares

Figure 5. Creating a User Account Figure 6. Setting Permissions

http://doc.freenas.org/index.php/AFP_Shares
http://doc.freenas.org/index.php/AFP_Shares
http://doc.freenas.org/index.php/CIFS_Shares
http://doc.freenas.org/index.php/CIFS_Shares

08/2011 10

GET STARTED

• NFS shares are configured in Sharing->NFS Shares->
Add NFS Share and are described at http://
doc.freenas.org/index.php/NFS_Shares

• the FTP service is configured in Services->FTP and
is described at http://doc.freenas.org/index.php/FTP

• the SSH service is configured in Services->SSH and
is described at http://doc.freenas.org/index.php/SSH

• the iSCSI service is configured in Services->iSCSI
and is described at http://doc.freenas.org/index.php/
ISCSI

Starting Services and Testing Your
Configuration
Once you have configured your share or service you will
need to start its associated service in order to implement
your configuration. Before doing so, you should enable
console messages within the administrative interface so
that you can view any error messages that occur when
starting the service. To do so, go to System->Settings->
Advanced, check the box Show console messages in the
footer (Requires UI reload), and click OK. Refresh your
browser and a text console will appear at the bottom of
your screen.

Then, go to Services->Control Services which will open
the screen shown in Figure 7.

To start a service, click its red OFF button. After a second
or so, it will change to a blue ON, indicating that the
service has been enabled. Watch the console messages
as the service starts to determine if there are any error

messages. If everything appears to be working, try to
make a connection to the service from a client system.
For example, use Windows Explorer to try to connect to
a CIFS share, use an FTP client such as Filezilla to try to
connect to an FTP share, or use Finder on a Mac OS X
system to try to connect to an AFP share.

If the service starts correctly and you can make a
connection but receive permissions errors, check that
the user has permissions to the volume/dataset being
accessed.

Summary
This article described the basic workflow when configuring
a FreeNAS™ system. It demonstrated how to: install
version 8.0.1, determine the type of sharing service that
is appropriate for your network’s needs, create volumes
and datasets to manage storage, create users and groups
to manage permissions, and configure and test a sharing
service.

The next article in this series will demonstrate some
common configuration scenarios.

DRU LAVIGNE
Dru Lavigne is author of BSD Hacks, The Best of FreeBSD
Basics, and The De�nitive Guide to PC-BSD. As Director of
Community Development for the PC-BSD Project, she leads the
documentation team, assists new users, helps to �nd and �x
bugs, and reaches out to the community to discover their needs.
She is the former Managing Editor of the Open Source Business
Resource, a free monthly publication covering open source and
the commercialization of open source assets. She is founder and
current Chair of the BSD Certi�cation Group Inc., a non-pro�t
organization with a mission to create the standard for certifying
BSD system administrators, and serves on the Board of the
FreeBSD Foundation.

Figure 7. Starting the Service

http://doc.freenas.org/index.php/NFS_Shares
http://doc.freenas.org/index.php/NFS_Shares
http://doc.freenas.org/index.php/FTP
http://doc.freenas.org/index.php/SSH
http://doc.freenas.org/index.php/ISCSI
http://doc.freenas.org/index.php/ISCSI

http://www.ateamsystems.com/FreeBSD

08/2011 12

DragonFly News

www.bsdmag.org 13

The resemblances to the app store concept are
striking! FreeBSD’s ports system, OpenBSD’s
ports, and NetBSD’s pkgsrc are all similar systems,

designed for incidental BSD users to wander through and
pick out desired software.

These systems, for those who are unfamiliar with
them, are a collection of files and 3rd-
party software set up to automatically
download, build, and install on your
favorite BSD machine.

We will focus on Pkgsrc. While it
originated on NetBSD, can run on a
large variety of UNIX-like computers. (may
be placed here: The instructions of this
article are specific to
DragonFly BSD. It may
vary with the many other
platforms supported for
pkgsrc.)

What can one do with
pkgsrc? Many things, but this article is
just going to focus on one use: building it all. Generously,
Joerg Sonnenberger’s pbulk program can automate the
entire package bulk process for you.

Over Nine Thousand!
As of this writing, pkgsrc has 10,480 packages in the most
recent release. Releases happen on a quarterly basis,
though it’s possible to follow it in day-to-day development
if you don’t mind the occasional problems.

That’s a lot of software to deal with. Building
every last package will show just
where the problems, are, however,
and the resulting binary package can
be used later for installing a package
without having to go through a
building process. This is especially

popular with people who don’t have a
lot of processing power, or patience.

An individual package
can be built in pkgsrc
by navigating to
the correct folder

inside pkgsrc – net/
wireshark for Wireshark,

for instance, or editors/vim for Vim – and
typing bmake install. bmake is NetBSD’s flavor of make,
and is installed as part of the pkgsrc bootstrap process,
which we aren’t covering here.

Your BSD ‘App Store’
with pbulk:
Building everything in pkgsrc with automation using
DragonFlyBSD

The „app store” concept seemingly is the latest fad with Apple,
Google, Amazon, Valve and so on. Each of them creating
individual platforms for moving software to incidental
customer gadgets completely through electronic download.
Well, as with many other technologies, a pioneer of this
software technology trend first showed up as an open source
concept.

08/2011 12

DragonFly News

www.bsdmag.org 13

Typing bmake install 10,480 times and capturing
the results is a bit more hassle than most people want
to endure. Joerg Sonnenberger’s pbulk program will
automate the entire process for you. It’s available in
pkgsrc under pkgstools/pbulk.

To keep from spraying thousands of packages onto
your existing computer, pbulk and all these programs
can be installed into a (separate) chroot (environment).
I’m using DragonFly, so these instructions are specific
to DragonFly. It may vary with the many other platforms
supported for pkgsrc.

Notice that the chroot installation process
as shown in Listing 1, actually puts you
into the chroot, where all commands
happen from here on. It also starts up linux
emulation, which is not necessary but can
be useful for some packages.

Now that you are in the chroot, there are
several things to put in place.
First, create directories to
hold the results of the build,
such as reports and binary
packages (Listing 2).

The next step is to download
the pkgsrc files, using cvs (Listing 3). It’s also possible to
grab a tarball of the files for a slightly less complex step.
‘setenv’ applies only to csh users; set these environment
variables in a way appropriate for your shell.

Note that this setup is downloading what is, at the time
of this writing, the most recent quarterly release of pkgsrc:
pkgsrc-2011Q2. If you omit the -r argument completely,
you get pkgsrc as it looks that minute, which may mean
you are downloading some packages as they are being
updated. You may have a slightly lower success rate
building those packages, but it will be the most up-to-date.
Your mileage may vary.

Edit the file /root/mk-base.conf, for setting up your custom
pkgsrc bootstrap (Listing 4). Your building will be done
under a pbulk user identity, so make sure to create that

user in the chroot, and set WRKOBJDIR to a
writeable location for that user.

Next, install pkgsrc’s tools within this
chroot, and then install a separate set for
pbulk to use. (Listing 5)

The last step is to configure /usr/

pkg_bulk/etc/pbulk.conf so that the report
and generated binaries are

uploaded, if you want to
upload them to a public
location. By default, pbulk
uses rsync to copy the data

around.
Make sure the other settings look correct for your

particular setup. If you aren’t planning to place this on a
public site or only want to deal with an email report, report_
recipients is the only setting you need to configure.

Listing 1. Building a chroot.

mkdir /build/pbulk_chroot

cd /usr/src

make DESTDIR=/build/pbulk_chroot buildworld

make DESTDIR=/build/pbulk_chroot installworld

cd etc

make DESTDIR=/build/pbulk_chroot distribution

cp /etc/resolv.conf /build/pbulk_chroot/etc

kldload linux.ko

chroot /build/pbulk_chroot

/etc/rc.d/ldconfig start

mount_devfs /dev

Listing 2. Directory creation in the chroot

mkdir /bulklog

mkdir /scratch

mkdir /distfiles

mkdir /packages

Listing 3. Installing pkgsrc �les

setenv CVSROOT anoncvs@anoncvs.NetBSD.org:/cvsroot

setenv CVS_RSH ssh

cd /usr

cvs -q checkout -rpkgsrc-2011Q2 -P pkgsrc

Listing 4. basic con�guration changes

KOBJDIR = /scratch

PKGSRCDIR = /usr/pkgsrc

DISTDIR = /distfiles

PACKAGES = /packages

FAILOVER_FETCH = yes

SKIP_LICENSE_CHECK = yes

ALLOW_VULNERABLE_PACKAGES= yes

WRKOBJDIR ?= /tmp/

08/2011 14

Run /usr/pkg_bulk/bin/

bulkbuild, and that’s it.
Building all packages will
probably take days, so it’s
wise to do this on a computer
that doesn’t get powered
down frequently, and w i t h i n
a persistent
t e r m i n a l
like screen
or tmux. If
s o m e t h i n g
goes wrong, /usr/pkg_bulk/ b i n /

bulkbuild-restart will restart the building process.
For an example of the reports in web format, visit:

http://avalon.dragonflybsd.org/reports/ and drill down
by version and architecture. Look for the meta folder,
and the report.html file in there will show you the exact
output format, including what failed build has the most
dependencies.

The end result
Congratulations! After some days, you’ll have a lot of
software! These can be installed directly using pkg_add
from pkgsrc, much faster than building individually from
source. You’ll also have a comprehensive list of what

JUSTIN C. SHERRILL
Justin Sherrill has been publishing the DragonFly BSD Digest
since 2004, and is responsible for several other parts of
DragonFly that aren’t made out of code. He lives in the northeast
United States and works over a thousand feet underground.

pkgsrc items do not build on your platform, to supply to
the proper people for fixing. Or, if you’re an extremely
helpful person, a to-fix list you can tackle yourself.

Listing 5. Installing pkgsrc tools

mkdir /usr/pkg_bulk/

cd /usr/pkgsrc/bootstrap

./bootstrap --prefix /usr/pkg_bulk --pkgdbdir /usr/pkg_bulk/.pkgdb

cd /usr/pkgsrc/pkgtools/pbulk

env PATH=/usr/pkg_bulk/bin:/usr/pkg_bulk/sbin:${PATH} bmake package

cd /usr/pkgsrc/bootstrap

./cleanup

Listing 6. Example lines to change in pbulk.conf

base_url=http://something/you_should_change_here

pkg_rsync_args="-av --delete-excluded"

pkg_rsync_target="/archive/packages/DragonFly-2.10/pkgsrc-current"

report_rsync_args="-avz --delete-excluded"

report_rsync_target="/archive/packages/DragonFly-2.10/pbulk_report"

report_recipients="you@your.email"

http://avalon.dragonflybsd.org/reports/

http://www.exonetric.com

08/2011 16

HOW TO’S The Swiss Army Knife for FreeBSD system administrators

www.bsdmag.org 17

It can be used for a variety of purposes, including
diskless systems, recovery partitions and remotely
overwriting other operating systems.

History
The idea behind mfsBSD originates from a script set
called depenguinator, created by Collin Percival in
December 2003. The goal of depenguinator was to allow
installing FreeBSD on dedicated servers that pre-install
only Linux distributions. The customly crafted image
file was written to the boot area of the boot disk and
after rebooting a FreeBSD system was fully loaded into
memory. Afterwards, the user could partition and format
disk drives and install FreeBSD the way he liked. The
original depenguinator was created for FreeBSD 5.x. This
version was incompatible with FreeBSD 6.x and 7.x. An
updated Depenguinator (2.0) was released in January,
2008. Depenguinator is designed to create FreeBSD
disk images on Linux computers and uses makefs from
NetBSD.

The mfsBSD project was started by myself in late 2007,
trying to make a depenguinator-like tool that works on
FreeBSD 6.x. The approach was significantly simplified
utilizing new features of the rcng startup system and in
addition the geom_uzip class was used to compress the
/usr filesystem. To save even more space, the latest version
uses lzma compression in several places. mfsBSD requires

FreeBSD to create images and unlike depenguinator, it can
create ISO images and tar-gz compressed distribution
files too. As the ZFS file system gained popularity, a shell
script script called zfsinstall was added to mfsBSD to easily
deploy ZFS-only installations of FreeBSD.

In April 2008, Daniel Gerzo published a mfsBSD-
related article called Remote Installation of the FreeBSD
Operating System without a Remote Console that is now
a part of the FreeBSD documentation collection.

Availability
mfsBSD can be downloaded from the mfsBSD webpage
(http://mfsbsd.vx.sk).

There are several downloadable ISO-files for the i386
and amd64 architectures. Files called special edition
contain an installable image of FreeBSD. To be able to
call the tool a Swiss Army Knife for FreeBSD system
administrators, the standard ISO files are supplied with
the following additional packages: cpdup, dmidecode,
e2fsprogs, ipmitool, nano, rsync, smartmontools, tmux.

Advanced users can download the source code and
build their very own distribution (and e.g. add custom
packages to it).

Use cases
mfsBSD can be used in a variety of ways. I would like to
list some of the areas where I use it in:

mfsBSD

mfsBSD is a toolset to create small-sized but full-featured
mfsroot based distributions of FreeBSD that store all files in
memory (MFS) and load from hard drive, usb storage device,
optical media or network.

What you will learn…
• What is mfsBSD and how you can use it
• How to build your own mfsBSD
• How to setup a network boot with mfsBSD

What you should know…
• FreeBSD system administration basics
• Computer networking basics

The Swiss Army Knife for FreeBSD system administrators

http://mfsbsd.vx.sk

08/2011 16

HOW TO’S The Swiss Army Knife for FreeBSD system administrators

www.bsdmag.org 17

The german dedicated server provider hetzner.de
already uses mfsBSD for their FreeBSD support. There
may be other providers, too.

Requirements
To run mfsBSD from a standard ISO-Image, an i386 or
amd64 system with at least 192MB RAM is required. For
testing purposes VirtualBox can be used.

To build mfsBSD on your own, an existing FreeBSD
installation version 8.x or higher is required (7.x is not
supported anymore). To create an ISO image, mkisofs
from the sysutils/cdrtools port must be installed. To speed
up xz compression, sysutils/pxz is recommended.

Building your own mfsBSD
To build your own mfsBSD images, you need to download
the source code from the project website. mfsBSD uses
a Makefile-based build system, so basically all you have
to do is run make with various flags and options. It is
advised to read the documentation and then to adjust your
configuration files and add custom packages. All scripts
are easy to customize – advanced users and system
administrators can add their own functionality as well.

The toolset supports the creation of three types of
output images:

• bootable raw images – useful for overwriting Linux
installations

• deployable tar.gz files – useful for network boot (PXE)
• bootable ISO images – useful for booting from optical

media or via management consoles supporting ISO
emulation

Example commands to build a custom mfsBSD image:

• Rescue System (with full ZFS support).
• Installation of FreeBSD (focus on ZFS-only installs).
• Diskless boot over network.
• Transforming a running Linux installation into

FreeBSD.

Rescue System
There is no perfect hardware, there is no perfect software
and there is us, system administrators, who occasionally
make mistakes. Some of these errors or mistakes may
prevent a FreeBSD system from booting. In this case,
mfsBSD can be booted from a partition on the harddrive,
an USB-stick, CD-ROM media, over the network (PXE)
or from any other block device supported by FreeBSD.
It provides near full functionality of FreeBSD (including
some additional packages) and the damaged installation
can be repaired, broken configuration scripts fixed or
boot drives repartitioned. The maintenance tasks can be
performed via local console, over the network using SSH
or after making some adjustments via a serial connection.
The default setup contains a mfsbsd_autodhcp setting that
puts all discovered network cards into DHCP mode. The
OpenSSH daemon is automatically started and enables a
remote login.

FreeBSD Install
The special edition ISO images contain a single file that
includes a complete FreeBSD installation. Extracting this
file to a bootable partition and adjusting the /etc/rc.conf
file creates a complete and fully working installation of
FreeBSD.

One of the main mfsBSD features is support for
simplified ZFS-on-root installations, provided by a script
called zfsinstall. This script does everything for the user,
from creating GPT partitions and the ZFS pool (supporting
single-disk, mirror and raidz modes) to deploying and
correctly configuring a new FreeBSD installation.

Diskless boot over network
Another ability of mfsBSD is to boot over network.
Users may create their own, custom distributions that
boot from the network and do not require a hard drive. I
have successfully booted mfsBSD using the FreeBSD’s
pxeboot boot loader, standalone or chained via pxelinux
(sysutils/syslinux). Later in this article I am providing a
configuration example of a PXELINUX chained mfsBSD
with a nice boot menu. This combination may be very
useful for dedicated server providers – as many of these
use the PXELINUX environment for their rescue and
installation systems, they can easily add FreeBSD image
deployment and rescue system support to their servers.

The mfsBSD build process
• Preparation of kernel and base distribution – kernel and

base distribution �les are extracted from a FreeBSD CD-
ROM (may be a mounted ISO image) or are optionally
custom-built and/or installed (make installworld + make
installkernel + make distribution) – for the special edition,
the distribution �le is created.

• Removal of unnecessary �les – to keep mfsBSD small,
a (user-adjustable) list of �les is removed from the
distribution.

• Processing of con�guration �les – required and optional
con�guration �les are processed and installed to the target
image.

• Compression of the /usr �lesystem – to save space, the /
usr directory is compressed (ideally using xz).

• Build of mfsroot – a mfsroot image is built.
• Creation of a deployable output image.

08/2011 18

HOW TO’S

You cannot have a ZFS pool on your system with the
same name as the pool you want to install. You have to
destroy it first or choose a different name with the -p flag.

If you booted from an ISO file (optical drive, management
console), you can mount your optical drive to gain access
to the distribution tarfile. Otherwise you will have to obtain
the tarfile from other sources (NFS, SCP, etc.)

mount_cd9660 /dev/acd0 /cdrom

Now you can use the zfsinstall install script to install
FreeBSD on your drive(s). The script can create a GPT
swap partition, supports single-drive, mirrored and raidz
installs and has many other options. Running the script
without any options gives you a list of supported options.
Option -h delivers a detailed help screen. Examples:
Single-drive install with a 2GB swap partition:

zfsinstall -d ad0 -t /cdrom/8.2-RELEASE-amd64.tar.xz -s 2G

Two-drive mirror with a 1GB swap partition on each drive
and lzjb compression enabled:

zfsinstall -r mirror -d ad0 -d ad1 -t /cdrom/

 8.2-RELEASE-amd64.tar.xz -s 1G -c

If no errors occured, your installation should be ready.
You can adjust /mnt/etc/rc.conf and/or chroot to /mnt and
set the root password. If you want to SSH to the newly
created system I recommend enabling root login in /mnt
/etc/ssh/sshd _ config. The nano editor is bundled with all
mfsBSD ISO files available from the webpage.

chroot /mnt

passwd

vi /etc/rc.conf

vi /etc/ssh/sshd_config

Tutorial: Setting up network boot with mfsBSD
(pxeboot and PXELINUX)
In this tutorial I am going to show how to boot mfsBSD
over the network.

This tutorial expects the DHCP server (ISC) and
TFTP server to be on a i386/amd64 FreeBSD computer
(server) using the same IP adress. If this is not the case,
configuration may differ, you have to adjust it on your own.

What do you need:

• A boot server (DHCP, TFTP) with FreeBSD sources
• mfsBSD (ISO from webpage or self-built)

cd /usr/src

make buildworld && make buildkernel

cd ~

fetch „http://mfsbsd.vx.sk/release/mfsbsd-1.1.tar.gz”

tar xfz mfsbsd-1.1.tar.gz

cd mfsbsd-1.1

make iso COMPRESS=xz CUSTOM=1

Tutorial:
Installing ZFS-on-root FreeBSD with mfsBSD
mfsBSD can be used to install a bootable ZFS-on-root
FreeBSD – the whole system will be on ZFS.

The magic is done by the supplied tool called zfsinstall.

What do you need:

• A system with (at least one) bootable and writable
block device (e.g. hard drive).

• A booted mfsBSD image (e.g. CD-ROM or network
boot).

• Access to the distribution file from mfsBSD special
edition (see mfsBSD homepage).

Instructions:
Log in to mfsbsd as root via SSH or local console (default
password: mfsroot). After booting mfsBSD, check if
your hard drives contain GPT partitions with the gpart
command. The drive(s) need to be clean before installing.
The zfsinstall script will not install if it finds any problems.

gpart show

If your target drive(s) already contain partitions, they need
to be cleaned. The destroygeom script does the job:

destroygeom -d ad0

Figure 1. mfsbsd pxeboot

The Swiss Army Knife for FreeBSD system administrators

www.bsdmag.org 19

Create the /tftpboot directory:

mkdir -p /tftpboot

Extract the contents of the mfsBSD ISO image to /
tftpboot

tar -x -C /tftpboot -f mfsbsd-8.2-amd64.iso

chmod -R go=u-w /tftpboot/*

chmod u+w /tftpboot/boot/loader.conf

The standard FreeBSD /boot/pxeboot uses NFS instead
of TFTP. In this tutorial, we are going to prepare a tftp-
enabled loader. If you want to use the standard loader,
you’ll have to set-up a NFS server on the same IP
address.

mv /boot/pxeboot /boot/pxeboot.orig

cd /usr/src/sys/boot

make clean && make depend && make -DLOADER_TFTP_SUPPORT

cd /usr/src/sys/boot/i386/pxeldr

make install

mv /boot/pxeboot /tftpboot/pxeboot

mv /boot/pxeboot.orig /boot/pxeboot

Start the inetd and dhcpd daemons

/etc/rc.d/inetd start

/usr/local/etc/rc.d/isc-dhcpd start

Your boot setup is ready, you can boot from network
now! The file /tftpboot/boot/loader.conf can be custom-
ized to your needs.

VirtualBox with a bridged ethernet interface is a fast
and easy way to test if your setup is working. For PXE
boot support, you need the VirtualBox Extension Pack
installed (see VirtualBox website) Just press the [F12] key

• some files from an installed sysutils/syslinux port (if
you want pxelinux)

• a network bootable (virtual) machine for testing and
demonstration

How to prepare the boot server (DHCP, TFTP)
The following examples expect a 192.168.0.0/24 network
with gateway and dns-server at 192.168.0.1. If you are
using different network parameters, you’ll have to alter the
configuration accordingly.

Install the FreeBSD sources into /usr/src.
Install the port: net/isc-dhcp31-server or net/isc-dhcp41-

server.
Example of a minimal /usr/local/etc/dhcpd.conf:

authoritative;

subnet 192.168.0.0 netmask 255.255.255.0 {

 range 192.168.0.100 192.168.0.200;

 option routers 192.168.0.1;

 option domain-name-servers 192.168.0.1;

 next-server 192.168.0.1;

 filename „pxeboot”;

}

You may adjust the options to your needs and/or add
another options.

Enable the tftp daemon in your /etc/inetd.conf by
uncommenting the following line:

tftp dgram udp wait root /usr/libexec/tftpd tftpd

-l -s /tftpboot

Enable dhcpd and inetd by adding the following two lines
to /etc/rc.conf:

inetd_enable=“YES“

dhcpd_enable=“YES“

Figure 2. zfsinstall virtualbox Figure 3. zfsinstall virtualbox shell

08/2011 20

HOW TO’S

at virtual machine bootup and then press the [L] key (boot
from LAN).

Intelligent boot loader: mfsBSD boot with
PXELINUX support
With PXELINUX, you get a nice boot menu and the ability
to configure individual boot options for different computers
or whole subnets. Booting from the local harddrive into
multiple operating systems or different mfsBSD versions
(e.g. i386 and amd64) is supported, too. If you want to
boot via PXELINUX, follow all the steps in the previous
section (Preparing the boot server) and continue with the
following instructions:

• Install the port: sysutils/syslinux (you need only two
files from the port, no need to keep it).

• Copy pxelinux.0 and menu.c32 to the /tftpboot directory:

cp /usr/local/share/syslinux/pxelinux.0 /tftpboot/pxelinux.0

cp /usr/local/share/syslinux/menu.c32 /tftpboot/menu.c32

• Rename pxeboot to pexboot.0:

mv /tftpboot/pxeboot /tftpboot/pxeboot.0

• Symlink pxelinux.0 to pxeboot (we are now booting
pxelinux):

ln -s pxelinux.0 /tftpboot/pxeboot

• Create the /tftpboot/pxelinux.cfg directory:

mkdir /tftpboot/pxelinux.cfg

• Create /tftpboot/pxelinux.cfg/default, you may use the
following example:

default menu.c32

allowoptions 0

totaltimeout 100

menu title Boot Menu

label local

 menu label Boot local system

 localboot 0

label mfsbsd

 menu label mfsBSD

 menu default

 KERNEL pxeboot.0

 The parameter totaltimeout 100 fires the default option
if no selection is made in 10 seconds.

 The parameter allowoptions 0 disables the TAB-key in
the boot-prompt.

• Now you are ready to boot from chained PXELINUX
with a nice boot menu!

Alternative: NFS
To boot from NFS instead of TFTP, you’ll need a working
NFS server and the standard pxeboot.

Copy the standard pxeboot from your /boot directory to
/tftpboot:

cp /boot/pxeboot /tftpboot/pxeboot

Add the following to the subnet section of /usr/local/etc/
dhcpd.conf:

 option root-path „192.168.0.1:/tftpboot”;

As of this example, the NFS server runs on 192.168.0.1
and the /tftpboot directory must be NFS-exported (/etc
/exports).

Alternative: DHCP on a separate server
If your TFTP server is on a different server than your
DHCP server, you need change following line in the
subnet section of /usr/local/etc/dhcpd.conf:

 next-server 192.168.0.2;

In this example, your TFTP server is at 192.168.0.2.

MARTIN MATUŠKA
Martin Matuška (mm@FreeBSD.org) is an IT manager, systems
administrator and FreeBSD committer. He is the founder of the
mfsBSD project, part of the FreeBSD ZFS team and maintainer of
several FreeBSD ports. He is managing a system administration
company VX Solutions s. r. o. (http://www.vx.sk) with focus on
deploying and maintaining ZFS systems and providing solutions
based on FreeBSD and Solaris family operating systems. He
writes at http://blog.vx.sk.

On the ‘Net
• http://mfsbsd.vx.sk – mfsBSD homepage
• http://blog.vx.sk – author’s blog with focus on ZFS and

FreeBSD
• http://syslinux.zytor.com – Syslinux homepage with

PXELINUX documentation
• http://www.virtualbox.org – VirtualBox homepage

mailto:mm@FreeBSD.org
http://www.vx.sk
http://blog.vx.sk
http://mfsbsd.vx.sk
http://blog.vx.sk
http://syslinux.zytor.com
http://www.virtualbox.org

http://www.freebsdmall.com

08/2011 22

HOW TO’S How To Make Memory File System In FreeBSD

www.bsdmag.org 23

This article will help readers make their own MFS
(Memory File System) that can be used for building
a bootable CD or USB. Tips on how to make a

bootable CD or USB are included, too.
If you have the following code in your /boot/loader.conf on

your CD, your CD, which you made bootable with mkisofs,
will use its root (/) directory upon booting (all directories
in/will be in one mountpoint – that is, in memory) from the
mfsroot.gz file:

#/boot//loader.conf

mfsroot_load=”YES”

mfsroot_type=”mfs_root”

mfsroot_name=”/boot/mfsroot”

You must have the mfsroot.gz file in your /boot directory
on your CD (or USB stick) and the system, after booting,
will then exclusively run in memory. This means that all
directories will be writable and you will not receive read-
only system warnings. To make a bootable CD, run the
following command (in the directory of your choice, but
with files you want to have in the ISO image):

mkisofs -R -b boot/cdboot -no-emul-boot \

 -c boot.catalog -boot-load-size 4 -o /mnt/

bootableiso.iso .

The minimal requirement is to include your /boot

directory (copied from a physical FreeBSD partition)
into the ISO image. However, before you run the mkisofs
command, you must prepare MFS.

Terminology
In this text, when a reference to a file put onto a CD (ISO)
is made, it must be clear that such a file is physically on

How To Make Memory File
System In FreeBSD
Memory File System is a very good option for your own
– customized FreeBSD system. Soon after FreeBSD CD (or
USB) boots with MFS, it loads all the necessary files from the
root directory in memory the same way as if these files were
in the root directory on your hard disk (usually /dev/ad0s1a).

What you will learn…
• How to make your own customized FreeBSD in MFS
• How to make your own bootable CD
• How to make your own bootable USB stick (disk)

What you should know…
• Some knowledge on mdcon�g
• Some knowledge on mkisofs

Listing 1. Files needed from /usr/bin

alias, at, atq, atrm, awk, basename, bsdtar, bunzip2,

 bzip2, bzip2recover, cap_mkdb, chfn, chgrp, chkey,

chpass, chsh, cmp, csplit, cu, dialog, diff, du, edit,

env, false, find, ftp, getopt, grep, gunzip, gzip, id,

killall, ld, ldd, locale, logger, login, logins, mkfifo,

mktemp, mkuzip, more, msgs, nc, netstat, newgrp, nice,

nohup, opieinfo, opiekey, opiepasswd, passwd, patch,

pgrep, pkill, printf, procstat, read, readlink, reset,

rlogin, rsh, scp, script, sdiff, sed, sftp, slogin,

sockstat, split, ssh, ssh-add, ssh-agent, ssh-keygen,

su, tar, tip, top, touch, tput, tr, true, tset, tsort,

tty, umask, unalias, uname, uptime, users, vmstat, w,

wait, wc, who, ypcat, ypchfn, ypchpass, ypchsh, ypmatch,

yppasswd, ypwhich

08/2011 22

HOW TO’S How To Make Memory File System In FreeBSD

www.bsdmag.org 23

Listing 2. Files needed from /usr/lib

cd /copy/usr/lib # we expect that /copy/usr/lib

already exists

mkdir aout

mkdir compat

cd /copy

cp -RP /usr/lib/libalias.so ./usr/lib

cp -RP /usr/lib/libarchive.so* ./usr/lib

cp -RP /usr/lib/libasn1.so* ./usr/lib

cp -RP /usr/lib/libauditd.so* ./usr/lib

cp -RP /usr/lib/libbsdxml.so* ./usr/lib

cp -RP /usr/lib/libbsm.so* ./usr/lib

cp -RP /usr/lib/libbz2.so* ./usr/lib

cp -RP /usr/lib/libcom_err.so* ./usr/lib

cp -RP /usr/lib/libcrypt.so ./usr/lib

cp -RP /usr/lib/libcrypto.so ./usr/lib

cp -RP /usr/lib/libcurses.so ./usr/lib

cp -RP /usr/lib/libcursesw.so ./usr/lib

cp -RP /usr/lib/libdevinfo.so* ./usr/lib

cp -RP /usr/lib/libdialog.so* ./usr/lib

cp -RP /usr/lib/libdialog.so* ./usr/lib

cp -RP /usr/lib/libdwarf.so* ./usr/lib

cp -RP /usr/lib/libelf.so* ./usr/lib

cp -RP /usr/lib/libfetch.so* ./usr/lib

cp -RP /usr/lib/libform.so* ./usr/lib

cp -RP /usr/lib/libformw.so* ./usr/lib

cp -RP /usr/lib/libftpio.so* ./usr/lib

cp -RP /usr/lib/libgcc_s.so ./usr/lib

cp -RP /usr/lib/libgnuregex.so* ./usr/lib

cp -RP /usr/lib/libgomp.so* ./usr/lib

cp -RP /usr/lib/libgpib.so* ./usr/lib

cp -RP /usr/lib/libgssapi.so* ./usr/lib

cp -RP /usr/lib/libgssapi_krb5.so* ./usr/lib

cp -RP /usr/lib/libgssapi_ntlm.so* ./usr/lib

cp -RP /usr/lib/libgssapi_spnego.so* ./usr/lib

cp -RP /usr/lib/libhdb.so* ./usr/lib

cp -RP /usr/lib/libheimntlm.so* ./usr/lib

cp -RP /usr/lib/libhistory.so* ./usr/lib

cp -RP /usr/lib/libhx509.so* ./usr/lib

cp -RP /usr/lib/libkadm5clnt.so* ./usr/lib

cp -RP /usr/lib/libkadm5srv.so* ./usr/lib

cp -RP /usr/lib/libkiconv.so ./usr/lib

cp -RP /usr/lib/libkrb5.so* ./usr/lib

cp -RP /usr/lib/libkvm.so ./usr/lib

cp -RP /usr/lib/liblwres.so* ./usr/lib

cp -RP /usr/lib/libmagic.so* ./usr/lib

cp -RP /usr/lib/libmemstat.so* ./usr/lib

cp -RP /usr/lib/libmenu.so* ./usr/lib

cp -RP /usr/lib/libmenuw.so* ./usr/lib

cp -RP /usr/lib/libmilter.so* ./usr/lib

cp -RP /usr/lib/libmp.so* ./usr/lib

cp -RP /usr/lib/libncp.so* ./usr/lib

cp -RP /usr/lib/libncurses.so ./usr/lib

cp -RP /usr/lib/libncursesw.so ./usr/lib

cp -RP /usr/lib/libnetgraph.so* ./usr/lib

cp -RP /usr/lib/libngatm.so* ./usr/lib

cp -RP /usr/lib/libobjc.so* ./usr/lib

cp -RP /usr/lib/libopie.so* ./usr/lib

cp -RP /usr/lib/libpam.so* ./usr/lib

cp -RP /usr/lib/libroken.so* ./usr/lib

cp -RP /usr/lib/libssh.so* ./usr/lib

cp -RP /usr/lib/libmilter.so* ./usr/lib

cp -RP /usr/lib/libthr.so ./usr/lib

cp -RP /usr/lib/libwrap.so* ./usr/lib

cp -RP /usr/lib/libypclnt.so* ./usr/lib

cp -RP /usr/lib/libz.so ./usr/lib

cp -RP /usr/lib/libzfs.so ./usr/lib

cp -RP /usr/lib/libzpool.so ./usr/lib

cp -RP /usr/lib/pam_chroot.so* ./usr/lib

cp -RP /usr/lib/pam_deny.so* ./usr/lib

cp -RP /usr/lib/pam_echo.so* ./usr/lib

cp -RP /usr/lib/pam_exec.so* ./usr/lib

cp -RP /usr/lib/pam_ftpusers.so* ./usr/lib

cp -RP /usr/lib/pam_group.so* ./usr/lib

cp -RP /usr/lib/pam_guest.so* ./usr/lib

cp -RP /usr/lib/pam_krb5.so* ./usr/lib

cp -RP /usr/lib/pam_ksu.so* ./usr/lib

cp -RP /usr/lib/pam_lastlog.so* ./usr/lib

cp -RP /usr/lib/pam_login_access.so* ./usr/lib

cp -RP /usr/lib/pam_nologin.so* ./usr/lib

cp -RP /usr/lib/pam_opie.so* ./usr/lib

cp -RP /usr/lib/pam_opieaccess.so* ./usr/lib

cp -RP /usr/lib/pam_passwdqc.so* ./usr/lib

cp -RP /usr/lib/pam_permit.so* ./usr/lib

cp -RP /usr/lib/pam_radius.so* ./usr/lib

cp -RP /usr/lib/pam_rhosts.so* ./usr/lib

cp -RP /usr/lib/pam_rootok.so* ./usr/lib

cp -RP /usr/lib/pam_securetty.so* ./usr/lib

cp -RP /usr/lib/pam_self.so* ./usr/lib

cp -RP /usr/lib/pam_ssh.so* ./usr/lib

cp -RP /usr/lib/pam_tacplus.so* ./usr/lib

cp -RP /usr/lib/pam_unix.so* ./usr/lib

08/2011 24

HOW TO’S

www.bsdmag.org

systems, in order to save some space, you must delete
some files you consider redundant.

The following instructions will help you create Memory
File System, but I need to emphasize again that the
files you will use (copy) from the /root, /etc, /var, /usr,
/usr/local, (etc.) directories will be working files in our
situation – that is, your MFS, to say it in a very simple
language, will be just working. Since not all of the files in
the above-mentioned directories are necessary (in order
to save space), your MFS may lack some functionalities,
so it is up to you to decide whether you copy other files
into your MFS or not. Please, consider this tutorial as a
spring board into the universe of new choices that will be
exclusively yours.

Steps
1) Make a copy of your root (/ or /dev/ad0s1a) directory

somewhere within your local files on your hard disk
(for example, in /copy or /usr/copy). Keep all directories
(in /copy), which point to other partitions, empty (/var,
/usr, /tmp, /home).

2) Keep only the following directories in your /copy/var
dir (and their subdirectories):

 crash, cron, db, empty, ftp, games, heimdal, lib, log,

 mail, msgs, named, preserve, run, rwho, spool, tmp, yp

/copy/vary/db/pkg may be deleted if it is too big.

3) Keep the full content of the /bin directory (which you
copied into /copy/bin).

4) Keep the /copy/sbin dir, too, as it is.
5) Keep all the libraries copied from /lib in /copy/lib.

Apply the same rule to /libexec (copied into /copy/
libexec).

6) The following files from /usr/bin suffice for a working
MFS: see Listing 1.

7) Use this script to copy libraries from /usr/lib to /copy/
usr/lib (in case your root partition [/] is small, use the
path in /usr/copy/usr/lib): see Listing 2.

 Copy these files to /copy/usr/libexec: see Listing 3.
8) Copy these directories from /usr/share into /copy/usr/

share: see Listing 4.
9) Copy the following files in /usr/sbin to /copy/usr/sbin:

see Listing 5.
10) chroot into your /copy directory and test your system

(change password, etc.). Do not forget to edit the /
etc/fstab file (which will be in MFS) – put the following
two lines into it (works also with USB):

/dev/md0 / ufs rw 0 0

/dev/acd0 /cdrom cd9660 ro,noauto 0 0

a CD and not in MFS. The mfsroot.gz file, for example, is
put onto a physical CD together with the /boot directory.
However, almost all files mentioned in this tutorial are
placed into MFS (mfsroot.gz)

How to prepare MFS?
Although there is a very good project called mfsBSD, this
step-by-step howto provides an independent way to learn
how MFS is prepared from scratch. If you later jump into a
conclusion that you have been unsuccessful in something,
check other projects such as mfsBSD (http://mfsbsd.vx.sk/
) or my MaheshaBSD Live CD (http://www.freebsd.nfo.sk/
maheshaeng.htm), which has a working mfsroot.gz file in
it. I prepared my own mfsroot.gz file (for MaheshaBSD) on
a trial-by-error basis and I did not find the mfsBSD project
helpful very much. I emphasize again that it is a very good
project, but I somehow need a different approach – for
example, to learn which files are needed for MFS, have
this information presented in a document like this tutorial,
since all other information is rather redundant for me.

You may argue that, I can copy files from my root
directory (ad0s1a) into MFS, but this is not quite our goal,
as many people are interested in smaller (embedded)
systems. I prepared mfsroot in MaheshaBSD from scratch
and here I provide you with information that I learned. It
is not perfect (mfsroot), but it works. The term perfect has
rather a relative meaning here, because with embedded

Listing 3. Files needed from /usr/libexec

/usr/libexec/atrun

/usr/libexec/ftpd

/usr/libexec/getty

/usr/libexec/ld-elf.so.1

/usr/libexec/mknetid

/usr/libexec/pppoed

/usr/libexec/rpc.rwalld

/usr/libexec/rshd

/usr/libexec/sftp-server

/usr/libexec/smrsh

/usr/libexec/ssh-keysign

/usr/libexec/tcpd

/usr/libexec/telnetd

/usr/libexec/tftpd

Listing 4. Directories needed from /usr/share

/usr/share/locale, /usr/share/misc, /usr/share/nls, /usr/

share/security, /usr/share/skel, /usr/share/syscons,

/usr/share/tabset, /usr/share/tmac

http://mfsbsd.vx.sk/
http://www.freebsd.nfo.sk/maheshaeng.htm
http://www.freebsd.nfo.sk/maheshaeng.htm

08/2011 24

HOW TO’S

www.bsdmag.org

 The above two lines are not harmful if you have a copy
of the same fstab file in the /etc directory on your CD
(it is not necessary, but you may have other ideas).

 If you want to save some space, the /copy/etc

directory (that you will put into MFS) will work with the
following directories and files:

 Directories in /copy/etc: X11, defaults, devd, mail,
pam.d, security, skel, ssh, ssl

 Files in /copy/etc: see Listing 6.
11) You may also add some files into your /copy/usr/

local dir. However, this is rather optional (not really
necessary). It is better to do so on a fresh installation
of FreeBSD (just to avoid confusion with so many files
and libraries you may later deal with) and on the basis
of your personal preferences. Midnight Commander
appears useful, for example.

12) Prepare the boot directory in /copy/boot (which will be
in MFS) – only the following files are needed (all /boot

Listing 5. Files needed from /usr/sbin

IPXrouted, ac, accton, acpiconf, adduser, apm, apmd,

arp, audit, boot0cfg, burncd, chkgrp, chown, chroot,

cpucontrol, cron, daemon, devinfo, diskinfo, extattrctl,

faithd, fdcontrol, fdformat, fdread, fdwrite, gstat,

hcseriald, inetd, iostat, ip6addrctl, jail, jexec, jls,

kbdmap, kgzip, mailwrapper, memcontrol, mixer, mountd,

moused, ndp, newsyslog, pciconf, pw, pwd_mkdb, rmt,

rmuser, rrenumd, rtsold, sa, sendmail, sshd, swapinfo,

sysinstall, syslogd, traceroute, vidcontrol, vipw, watch,

watchdog, watchdogd, zzz

Listing 6. Files needed from /etc

aliases, amd.map, apmd.conf, auth.conf, csh.login, ddb.conf,

devd.conf, devfs.conf, dhclient.conf, disktab, dumpdates,

fbtab, fstab, ftpusers, gettytab, group, hosts, inetd.conf,

libalias.conf, localtime, locate.rc, login.access,

login.conf, login.conf.db, mac.conf, mail.rc, master.passwd,

motd, netconfig, netstart, network.subr, networks,

newsyslog.conf, nscd.conf, nsswitch.conf, opieaccess,

passwd, pccard_ether, profile, protocols, pwd.db, rc,

rc.conf, rc.d, rc.local, rc.resume, rc.sendmail,

rc.shutdown, rc.subr, rc.suspend, remote, resolv.conf,

rpc, services, shells, spwd.db, sysctl.conf, syslog.conf,

termcap, ttys

Listing 7. Directories needed from /etc:

X11, defaults, devd, mail, pam.d, security, skel, ssh, ssl

http://www.bsdcertification.org

08/2011 26

HOW TO’S

/kernel files will be available on your CD or USB stick
after it boots; you do not need them all in MFS; use
mount _ nullfs to mount the /boot directory on your CD):

/boot/boot

/boot/boot0

/boot/boot0sio

/boot/boot1

/boot/boot2

/boot/mbr

/boot/loader.conf #keep it identical with loader.conf on a

CD/USB

In case you would like to use compression later, these
files will appear useful (symbol files are not needed if
you recompile the kernel with the commented

„#makeoptions DEBUG =-g” option” line in your kernel

configuration file):

/boot/kernel/geom_label.ko

/boot/kernel/geom_label.ko.symbols

/boot/kernel/geom_uzip.ko

/boot/kernel/geom_uzip.ko.symbols

/boot/kernel/zlib.ko ./boot/kernel

/boot/kernel/zlib.ko.symbols

13) Now we will create MFS (40 MB)
dd if=/dev/zero of=mfsroot bs=1024k count=40

You may, too, choose a bigger number than 40. We will
format it and mount it:
mdconfig -a -f mfsroot md0

newfs md0

mount /dev/md0 /mnt

Figure 1. This MFS was created from FreeBSD 8.2 RELEASE and tested under
VMware and Qemu, where it worked without problems (also changing local
password for root worked)

14) We will copy all the files from /copy to /mnt
(where our mfsroot file is mounted). With the
above instructions, I have still 1.2 MB free space
in my mfsroot.
15) Now we will umount the /mnt dir and will gzip
the mfsroot file (its size will be about 13,6 MB
after compression):
umount /mnt3

mdconfig -d -u /dev/md0

gzip mfsroot

16) Copy the mfsroot.gz file into the directory (/
ISO/boot, for example) from which you will make a
bootable ISO. Do not forget that the file mfsroot.gz
must be in the ../boot dir. To build the ISO image,
use the same command as suggested in the
beginning of this article. Imperative is to make the
ISO image from the directory that contains the

copy of /boot dir with all kernel files that reside on your
physical (/dev/ad0s1a) root partition. Putting any other
directory into your ISO is a matter of choice (you may
mount it later as a regular dir on a CD – just use the
mount_cd9660 command).

If you want to work with USB devices, use the same
mfsroot.gz file as described in this article – copy it
together with the /copy/boot directory onto your USB
stick, but before you do so, prepare your USB device
(make it bootable, etc.):

fdisk -BI /dev/da0

bsdlabel -B -w da0s1

newfs -U -O1 /dev/da0s1a

boot0cfg -v -B da0

Some notes on copying files onto a USB stick. -U -O1 [O
like in Olympus, not zero] is for the UFS1 format, which
provides much shorter copying time (only with USB sticks)
than UFS2; if you decide to choose UFS2, type -U -O2,
but expect that the copying time (if you want to work with
many files) will be much longer. Do not forget to use the
suggested copy of loader.conf (shown in the beginning of
this tutorial) in the /boot directory on your USB stick, too.

JURAJ SIPOS
Juraj lives in Slovakia, where he works in a library (in an
educational institute). He has been writing and selling computer
articles for over ten years. He wrote an xmodmap how to
(www.faqs.org/docs/Linux-mini/Intkeyb.html) and in addition to
computers he is also interested in spirituality, but not really the
guru side of things, but more-so freedom and self-actualization.
His website says more: www.freebsd.nfo.sk

http://www.faqs.org/docs/Linux-mini/Intkeyb.html
http://www.freebsd.nfo.sk

http://2011.eurobsdcon.org

08/2011 28

HOW TO’S Manipulating map data using QGIS

www.bsdmag.org 29

We also examined using SLD to highlight values
on our nyc_buildings map. While this is a good
introduction into the server end technology, a

great deal of work is involved at the client end creating
and modifying custom maps, often with difficult data e.g.
overlapping or irregular post codes. Very few systems in
the enterprise are GIS or spatially aware, and as a result
considerable skill is required creating quality maps. One
of the most widely available tools for this purpose is the
Quantum GIS Geographic Information System (QGIS) an

Open Source suite that supports an extensive range of
formats. With QGIS you can:

• View and overlay vector and raster data in different
formats and projections

• Create maps and interactively explore spatial data via
a GUI

• Create, edit and export spatial data
• Perform spatial analysis
• Publish your map

Manipulating map data
using QGIS
In the previous two articles we configured Geoserver and
Postgres with PostGIS extensions to serve our map data.

What you will learn…
• A rudimentary introduction to the Quantum GIS Geographic

Information System QGIS and how to import shape�les and rasters
into Geoserver manipulating the raster �le with GDAL

What you should know…
• What you need to know: Basic FreeBSD administration skills,

Previous FreeBSD GIS tutorials in this series

In this article, we will examine how to create and
manipulate shapefiles

Figure 1. Typical GIS topology

���������

���
�����������

������ ������ ������

����������

����������

���

�������������������������
�������������������

��������
�������

08/2011 28

HOW TO’S Manipulating map data using QGIS

www.bsdmag.org 29

QGIS is available as a client application under FreeBSD,
but unfortunately the FreeBSD package does not have
Postgresql support compiled in, so if this is desired, QGIS
will need to be compiled from source. Due to the extensive
number of heavyweight libraries involved, this is a lengthy
and time consuming process. There also seems to be some
issue with the Python plugins under the latest FreeBSD, but
without testing I cannot be sure if this would be resolved
by compiling from scratch and allowing QGIS to sort out
the dependencies. As a test I performed an install on my
Ubuntu 11 box and Postgresql / Python was supported as
standard, so this is a possible solution for those who wish to
go down the Open Source route without a very long wait.

As we will be concentrating on the FreeBSD version, we
will be limited to processing ESRI shapefiles and raster

QGIS is available for Windows, Linux, Unix and Mac
OSX platforms. See http://www.qgis.org for more
detailed information.

GIS system topology
Typically, a GIS system will comprise of multiple servers,
clients (in our case data is served over the web rather
than via a custom application) and one or more GIS
workstations (Figure 1). In the previous articles we have
configured Geoserver and Postgresql on the same server,
which in reality under heavy workloads would be a major
bottleneck. While Geoserver comes with its own tilecache
(GeoWebCache) running this on a separate server or
using a different product (e.g. TileCache by MetaCarta)
may be desirable.

Figure 2. QGIS Splash screen

Table 1. Contents of QGIS sample data �le

Directory Contents
Climate A point shape layer with some climate data for the diagram overlay feature collected from http://

climate.gi.alaska.edu/Climate/Temperature/mean_temp.html.

CVS table This layer was generated from the gtopo30 dataset in GRASS and can be used with the delimited text and the
interpolation plugin in QGIS.

GML A polygon type GML layer of the alaska lakes. The vector layer was derived from VMAP0 data.

GPS This layer was created for the QGIS demo dataset using the digitizing feature of the QGIS GPS plugin. The
waypoints show 4 national monuments in Alaska. The CRS of the gpx �le is latlon, WGS84.

GRASSDATA A collection of vector and raster layers was created for the QGIS demo dataset. The vector layers were derived
from VMAP0 data..

Raster Information on AVHRR data (Global Land Cover Classi�cation) are available at: http://glcf.umiacs.umd.edu/data/
landcover/description.shtml The data are classi�ed and colored according to information from glcf. Both color and
reclass tables are provided with the data.

VMAP0_shape�les The VMAP0 dataset has been converted from VPF format to SHP format and kindly provided by Andras Fabian.
Then the data were adapted for alaska dataset. For further information about the original dataset, please refer to
http://gis-lab.info/qa/vmap0-eng.html

Figure 3. QGIS User interface

http://www.qgis.org
http://climate.gi.alaska.edu/Climate/Temperature/mean_temp.html
http://climate.gi.alaska.edu/Climate/Temperature/mean_temp.html
http://glcf.umiacs.umd.edu/data/landcover/description.shtml
http://glcf.umiacs.umd.edu/data/landcover/description.shtml
http://gis-lab.info/qa/vmap0-eng.html

08/2011 30

HOW TO’S Manipulating map data using QGIS

www.bsdmag.org 31

data. These can be manually uploaded to Geoserver
after modification. It is probably not advisable to edit
the shapefiles in situ as these are accessed directly by
Geoserver.

What you will need
If you have been following the series, the pre-configured
Geoserver is useful, but not necessary unless you wish to
access the Postgres data (nyc_buildings) we imported in
the previous article in QGIS or import the modified maps.
You will need a pre-configured FreeBSD box with X
configured and running, and with internet access. For this
tutorial, I used a lightweight window manager Fluxbox.
Some sample ESRI shapefiles will also be required, In
this example I have used the QGIS sample data which
is available at: http://download.osgeo.org/qgis/data/qgis_
sample_data.tar.gz.

Installation
Within a X-windows terminal, su to root and perform the
following:

 pkg_add -r qgis

 pkg_add -r wget

 exit

 cd ~

 wget http://download.osgeo.org/qgis/data/qgis_sample_data.tar.gz

 tar -xvzf qgis_sample_data.tar.gz

 qgis

You should be presented with the QGIS splash screen
and the user interface (Figure 2 & 3). The GUI is divided
into 6 areas as follows:

Figure 4. Creating a vector data source by opening a shape�le

Figure 5. Creating a raster data source by opening a GDAL image

Figure 6. Toggling the Overview

Figure 7. Map with raster and vector data loaded with Vector layer
button highlighted

http://download.osgeo.org/qgis/data/qgis_sample_data.tar.gz
http://download.osgeo.org/qgis/data/qgis_sample_data.tar.gz

08/2011 30

HOW TO’S Manipulating map data using QGIS

www.bsdmag.org 31

1 Menu bar: This provides access to the hierarchical
menus

2 Toolbar : The toolbars provide quick access to most
menu items, plus additional tools for interacting with
the map

3 Map Legend: This displays the layers visibility, and
whether or not we are in editing mode

4 Map View: Where the maps are displayed and edited
5 Map Overview: Shows the full extent of the current

map. Drag the square to navigate around the map.
If not enabled, this can be selected under Settings/
Panels

6 Status Bar: Displays rendering progress, current co-
ordinates etc.

QGIS sample data
The sample data is extracted into the qgis_sample_data
directory. All data are projected in Alaska Albers Equal
Area with (unit feet) unless otherwise specified (EPSG
Code 2964). The dataset contains a collection of geodata
from several sources with different licenses. These
licenses have to be respected by the user (Table 1).

Loading the base raster layer
Raster data is pixel based, each pixel represents
a geographic point. Raster is best suited for large
geographic area that hold a lot of variation that would be
impractical to digitise into vector format, e.g. terrain.

Figure 8. Layer properties dialogue

Figure 9. Non-Settlement data selected

Figure 10. Camp data selected

Figure 11. Attribute table

08/2011 32

HOW TO’S Manipulating map data using QGIS

www.bsdmag.org 33

Load the landcover.img raster file by clicking on the Add
Raster Layer button. Right click on the layer once loaded
and enable Show in overview. You can now freely pan
around the map, zoom in and out etc. (Figure 3-5).

Loading a vector layer
Shapefiles are used to hold vector data. For example
where raster data (which is pixel based) would be used
to display satellite or aerial imagery, vectors would be
used on a separate layer to display geometry features
associated with the raster layer e.g. towns, roads and
boundaries. The town would be represented by a point,
the road by a line (or polyline) and the boundaries by a
polygon. As most GIS systems do not allow the mixing
and matching of geometry features, each geometry

feature and corresponding attribute data is saved as a
separate layer.

Click on the Add Vector Layer and import the trails, popp
and airports layers (Figure 6). To improve performance,
generate a spatial index by right clicking on the vector layer,
selecting properties and Create Spatial Index (Figure 7).

Manipulating the layers
Points: The popp layer holds points relating to settlements,
buildings, cabins etc. At 100% scale these are not too
densely packed, but as we zoom out these become
blurred. We will split the data into separate layers, and
use different icons to represent each attribute.

• Right click on the popp layer and save as settlement.
Repeat for camp, building and ruins.

Figure 12. Deleting features

Figure 13. Airports data

Figure 14. Vector data with Airports highlighted

Figure 15. Fictional �ood polygon

08/2011 32

HOW TO’S Manipulating map data using QGIS

www.bsdmag.org 33

• Remove the popp layer
• Add the settlement layer
• Toggle editing
• Open the attribute table and search for Settlement in

F_CODEDESC
• Invert the selection
• Delete (This will take a few minutes as QGIS will have

to remove > 1300 entries.)
• Toggle editing and save changes

Repeat steps 3-9 for cabin, building and ruins (Figure 8-
11).

Duplicating a point

• Toggle editing
• Click on select features
• Click on the feature you want to copy
• Click on Copy Feature
• Click on Paste Feature
• Click on the Move tool to relocate
• Click on select features
• Click on Open Attribute table and edit the record as

appropriate [Figure 12 & 13]
• Toggle editing and save changes

Adding a polygon
I have created a fictitious flooding area at the top RHS of
the map. I wasn’t terribly accurate mapping the edges, but
in a real map I would habe been more precise.

• Add a new shapefile layer
• Toggle editing
• Click on the capture polygon
• Double click to place point, right click to finish
• Toggle editing and save (Figure 14).

Note that while we can manipulate the positions
and attributes of the features, some changes (e.g.

Figure 16. Editing the workspace in Geoserver

Figure 17. Editing the workspace in Geoserver

Figure 18. Editing the Raster datasource

Figure 19. Editing the Stores

Figure 20. Setting the bounding box and SRS

Figure 21. Managing the layers

08/2011 34

HOW TO’S

While the shapefiles will import straight into Geoserver,
the raster image requires the GDALl extension to import
the file. For the time being, we will convert this with the
GDAL (Geospatial Data Abstraction Library). Install
GDAL on the Geoserver box and convert the raster file
from IMAGINE format to GEOTIFF:

 pkg_add -r gdal

 cd /usr/local/apache-tomcat-7.0/webapps/geoserver-2.1.0/

data/data/Alaska/raster

 gdal_translate -of GTiff landcover.img landcover.tiff

In Geoserver

• Create a workspace called Alaska with URI http://
localhost/alaska (Figure 15-16)

• Create a store from the vector data source in
Workspace Alaska called Alaska that is a directory
of shapefiles and point that at the Alaska shapefiles
directory.

• Create a store from the raster data source GeoTIFF
called Alaska Base Map and publish this with
Declared SRS of EPSG:2964 (Figure 17-18).

• Create and publish each layer / shapefile in turn
using a Declared SRS of EPSG:2964. Geoserver
will automatically decide the best style to use, you
may change some styles but a WMS error will be
generated if you try to display a point using polygon
style etc (Figure 19 – 20)

• Create a layer group with the layers you have
imported (Figure 21)

• Check each layer in preview mode that you get what
is expected, finally preview the layer group and you
should see you new airport and the flooding area
(Figure 22).

Further challenges
All the QIS sample data should work OK in the FreeBSD
version, I will leave it to the reader to experiment with the
other data sets.

ROB SOMERVILLE
Rob Somerville has been passionately involved with technology
both as an amateur and professional since childhood. A
passionate convert to *BSD, he stubbornly refuses to shave
of his beard under any circumstances. Fortunately, his wife
understands him (she was working as a System/36 operator
when they �rst met). The technological passions of their
daughter and numerous pets are still to be revealed.

transparency/ icons) will not be imported into Geoserver.
Such changes can be performed using SLD and / or
WMS styles as detailed in the previous tutorial.

The same process can be performed to draw roads,
rivers etc. using the line tool. If you have used a drawing
oe CAD package QGIS is similar in concept and design.

Import to Geoserver
We will import the shapefiles into Geoserver as a directory
of spatial files (shapefiles).

• Copy the shapefiles and rasters into two seperate
directories called shapefiles and raster under a
directory called Alaska

• Copy Alaska into /usr/local/apache-tomcat-7.0/webapps/
geoserver-2.1.0/data/data on the Geoserver box

• chown -R www:www Alaska to flag the files with
correct permissions

Figure 22. Geoserver layer groups

Figure 23. QGIS edited map in Geoserver

http://bsdmag.org

08/2011 36

TIPS AND TRICKS IP Version 6: Open with Care

www.bsdmag.org 37

Ready or not, the move to the next generation of
Internet protocols is upon us. Despite the promise of
improved security, the move to the next-generation

Internet protocols will create short-term problems for your
network. Over the long term, IPv6 promises (it’s design is
some 15 years old, so from when does it hold its promises,
from 15 years way back?!) to increase security with
improved encryption and features such as IPSec (van
Hauser pejorated IPSec as a pain in the as!), an end-to-
end scheme offering mutual authentication between hosts.
Until we get to a pure IPv6 environment, we will probably
be slightly more at risk. IPv6 is not a silver bullet to solve
all security problems. It’s not going to solve your user and
application problems. In some instances there will be
hardware problems at first hand.

For some of us, there are two drivers for the transition to
IPv6. First, the pool of available IPv4 addresses is rapidly
drying up, so the growth in the Internet will increasingly
be in the IPv6 address space. Second, for those working
in US government, the White House has mandated that
agencies enable IPv6 on public facing servers and services
by September of 2012, and enable the new protocols on
internal applications within two years after that. When
talking about transition, don’t gloss over security.

Although IPv6 offers new features, until the foreseeable
future administrators will still have to maintain existing IPv4
infrastructure – which might be described as nothing but a

numbering scheme to which security has been added (this
seems to be the way IPv6 will follow, too). That means the
familiar firewalls, access control lists and other security
barriers now in place will have to be maintained. At the
same time, the new protocols will have to be managed
and maintained with a dearth of experience, expertise,
and tools. That in turn could expand attack surfaces and
open up new vectors for the black hat guys.

Six security tips for your transition to IPv6
Here is a listed collection of high-level suggestions concerning
security issues to keep in mind when planning your transition
to IPv6. It is not comprehensive but a consensus of high-
level suggestions that I have gathered from my reading.

Planning and Policy
Introduction of IPv6 will create a separate but not
necessarily equal network in the enterprise that will
require its own security policies. New policies will need to
be as stringent as existing ones and appropriate controls
will have to be applied all over again, because existing
controls may not translate to the new environment.

One must pay attention to the IPv6 environment and
keep the IPv6 filters and policies up to date and parallel
to the IPv4 policies. Otherwise, you might have IPv6
vulnerabilities that you assumed were closed because
they were closed in IPv4.

IP Version 6: Open with
Care
Despite the promise of improved security, the move to the
next-generation Internet protocols will create short-term
problems for your network. Here are six tips to keep in mind
in planning your transition to IPv6

What you will learn…
• Why IPv6 is already a latent threat in your IPv4-only network
• Plan ahead to avoid IPv6 security problems before widespread

deployment
• Identify known areas of weakness in IPv6 security

What you should know…
• IPv6 is becoming a reality.
• IPSec is not the answer to every IPv6 security issue
• A new protocol brings new security issues with it

08/2011 36

TIPS AND TRICKS IP Version 6: Open with Care

www.bsdmag.org 37

The problems can come in two broad areas. There are
bound to be new and unexpected flaws and vulnerabilities
in the coding and configuration of the networking stack
and in applications and services.

We are going to see an array of bugs that in some cases
will become security vulnerabilities. We will see new
exploits evolve. There is little that can be done to prevent
that, but it must be taken into account when implementing
the protocols and forming policy.

The other area of threat comes from breaking things
already in place or allowing existing policies to break new
things. Take, for example, the Internet Control Message
Protocol (ICMP), which is used to send error messages
and is not typically used by end-user applications.

If a security administrator is overly conservative,
blocking everything he isn’t certain is needed, ICMPv6
might get completely blocked, impeding discovery, routing
and more. ICMPv6 cannot be blocked arbitrarily. The good
news is that ICMPv6 doesn’t contain the vulnerabilities
found in ICMPv4.

While equivalent security must be maintained for both
sets of protocols, the policies might not be transferable
without creating problems.

Tools and Testing
What is lacking is maturity. While IPv6 capability is
theoretically available, few networks have been using
it. Will network management and security tools work as
advertised? Will they perform on par with IPv4 tools or will
they create bottlenecks and roadblocks?

It’s too new to be an established set. It needs to be used
more in production.

Development of a fully mature suite of tools will require
real world experience that will not be available until the
transition to IPv6 is well under way. In the meantime,
thorough testing will be needed to eliminate the most
obvious problems and improve performance. Poorly
implemented IPv6 stacks and tunneling or translation
plans will be difficult to properly secure and monitor.

Breaking some glass in a test environment will be
necessary.

Spam and Blacklisting
Spam, like the poor, will always be with us, and the
transition to IPv6 could make it worse.

Every time there is a change, it gives the spamers a
new way to figure out how to get through a firewall. A lot of
the spam tools won’t be ready to address these tricks.

One of those tools is blacklisting: The blocking of IP
addresses and URLs that are known to be sources of
spam or other malicious traffic. Blocking addresses, as

You have to spend the time and effort to examine your
existing security and access policies and how they can be
adapted to IPv6.

One area of concern is likely to be access policy, which
often associates an address with a user in assigning
privileges. That system is beginning to show wear with
the proliferation of personal mobile devices that are
increasingly being used to access network resources,
which might not be possible with IPv6. With the larger
address space available in IPv6, the addressing is more
dynamic in IPv6 and almost constantly changing.

By enabling IPv6 for internal applications, thought will
have to be given to just what services should be available
through IPv6 and what to maintain under current access
controls for IPv4. As more resources are made available
on IPv6, authentication and authorization schemes and
technology at the same level of security will have to be
tailored for the new protocols.

Workforce and Experience
Managing and securing two networks running different
protocols will require trained workers who might not be
readily available.

It’s the human element, having people who know not
only how to implement the new protocols but manage and
maintain them as well. The onus is on you to hire that
resource.

Is there an adequate pool of IT professionals with training
and experience in IPv6 from which to draw? I don’t believe
so. Engineers today are grounded in version 4.

Fortunately, although versions 4 and 6 of the Internet
protocols are not interoperable, they still are IP and if you
know one, learning the other should not be that difficult. If
you are a network engineer today, the leap to IPv6 is not a
huge leap, but it does require hitting the books.

The situation is not the same as the move from switched
circuit telephone service to Internet telephony. That move
came suddenly and the differences between traditional
service and voice-over IP were great. For those who
choose not to adapt, it may be a career ending decision.

This does not change the fact that additional manpower
is likely to be needed to oversee two networks or two
versions of a network, however, and despite available
training for IPv6, practical experience in running a
production network with the protocols still is scarce.

Breaking Things
IPv6 is much more complex and complexity equals
problems. When you are making a transition this complex,
the potential for mistakes and unexpected issues is
great.

08/2011 38

TIPS AND TRICKS

A block of addresses could be remapped to a proxy that
would make it more difficult for an outsider to correlate
traffic and see what is going on side the network, and to
inject himself into a particular stream. That could restore
some of the security provided by NAT at the cost of
additional network complexity. There has always been a
conflict of interest between visibility and security and that
is not necessarily going to change with the adoption of
IPv6.

Conclusion
IPv6 is becoming a reality. The many years of early
protocol research have paid dividends with products that
easily interoperate. Several early IPv6 research groups
have disbanded because the protocol is starting to move
into the transition phase. The 6BONE (phased out with
RFC 3701) and the KAME (http://www.kame.net) IPv6
research and development projects have wound down
and given way to more IPv6 products from a wide variety
of vendors. Deployment of IPv6 is not a question of if but
when. IPv6 is an eventuality.

The transition to IPv6 continues to take place around
the world. The protocol is gaining popularity and is being
integrated into more products. There are many IPv6-
capable operating systems on the market today. Linux,
BSD, Solaris, and Microsoft Windows server 2008
operating systems all have their IPv6 stacks enabled by
default, and IPv6 operates as the preferred protocol stack.

IPv6 will eventually be just as popular as IPv4, if not more
so. Over the next decade as IPv6 is deployed, the number of
systems it is deployed on will surpass those on IPv4. While
early adopters can help flesh out the bugs, there are still
many issues to resolve. IPv6 implementations are relatively
new to the market, and the software that has created these
systems has not been field tested as thoroughly as their
IPv4 counterparts. There is likely to be period of time where
defects will be found, and vendors will need to respond
quickly to patching their bugs. Many groups are performing
extensive testing of IPv6, so they hopefully can find many
of the issues before it is time to deploy IPv6. However,
all the major vendors of IT equipment and software have
published vulnerabilities in their IPv6 implementations.
Microsoft, Juniper, Linux, Sun, BSD, and even Cisco all
have published vulnerabilities in their software. As IPv6 has
been adopted, it is evident that these major vendors have
drawn the attention of the hackers.

well as monitoring traffic to identify and filter malicious
traffic, could become more difficult in the dynamic IPv6
environment.

Dynamic content now being delivered via IPv4 is
making blacklisting an imperfect tool. The approach is
already ineffective in IPv4 and it will become less effective
with IPv6.

One Web page request can be subject to twenty or
more links and bad guys can take advantage of this to
hide the source of malicious traffic. Another complication
with blacklisting is the use of distributed botnets as well
as legitimate resources that have been compromised to
distribute spam and malicious code. By limiting the volume
of suspicious traffic from any one source, identifying and
blacklisting that source can be made more difficult.

As inadequate as blacklisting is by itself, it remains a
useful tool and is not likely to be abandoned with IPv6.
However, as monitoring suspect traffic and its source
becomes more complex in a fully IPv6 world, it will
require cloud-based services to provide the granularity
of control and scale to the volumes needed for effective
blocking.

Fortunately, the full impact of this change is not likely to
be felt for some time. The level of IPv6 traffic on the Internet
so far is minuscule and for the next couple of years we are
going to be seeing a trickle rather than a flood.

Security through Obscurity
There is a constant tension in networking between
functionality and convenience on one side and security
on the other. The improved visibility and end-to-end
connectivity offered by IPv6 could have a down side in the
form of increased risks.

One of the unforeseen advantages of IPv6 has been
Network Address Translation (NAT), a technology for
placing multiple private addresses behind a single public
IPv4 address as a way to extend increasingly scarce
addressing resources. NAT has been criticized as a
Band-Aid fix that breaks the end-to-end connectivity of
the Internet and interferes with network management but
it also provides a degree of security through obscurity by
shielding much of the network from outsiders.

Putting NAT in an IPv6 network would be like putting a
buggy whip holder on an automobile. However, if you get
rid of NAT, you are going to open up the attack surface of
your network.

NAT-based policies for address allocation and
management will no longer apply and outsiders are
given a potentially unobstructed view of the network. One
solution could be to take advantage of the large address
space available in IPv6 to restore some of the obscurity.

PAUL T. AMMANN
Paul lives in New Fair�eld, CT with his wife Eve and two cats.
He recently converted from Linux to OpenBSD although he still
misses his TI 99/4A and Timex Sinclair.

http://www.kame.net

http://www.dotlike.net/

08/2011 40

TIPS AND TRICKS Puffy The Hobbit

www.bsdmag.org 41

This article is meant to be an easy-read. I’m not
going to go into deep technical details on purpose,
the point being to show the most common and

obvious problems as well as the current state of the
Union.

Please note that opinions expressed in this article are
mine entirely, I’m not the ambassador of the BSD crowd
nor anything else ;-)

First, a word regarding this particular thread. On one
hand, I can understand Lennart’s position, he wants to
use the technology available to him, even if that implies
dropping support for software or configurations that
he does not use. We can’t blame him for developing
whatever he wants, but the real question is what should
the upstream projects do with it.

So what should GNOME really be? It is of course up to
the developers to decide how they want it to grow and to
be honest, currently things aren’t very clear. Is GNOME
supposed to grow as a complete Operating System based
on the Linux kernel? Is it supposed to be a generic Unix
Desktop? Or something else?

The first questions that are often asked about porting
GNOME to OpenBSD are why would anyone want to do
that?, who cares about such a bloated piece of software or
people who want to use GNOME should just run Linux ...

Somehow this stupid behavior and short-sighted mind
(not to mention the lack of thought) is one of the reasons

that I keep working on porting GNOME to our favorite
Operating System: I like the challenge and I want to prove
it is useful for everyone to keep supporting platforms other
than Linux.

The other reason is that it is part of my daily work to
build and support Desktop systems based on OpenBSD
and GNOME which are used by thousands of users
around the world (that said, if GNOME was to become a
Linux-only software, there would be alternatives).

OpenBSD specific challenges
People working on porting software to OpenBSD know
that several functions that are taken for granted on other
Unixes aren’t available here. This is actually the trickiest
part because writing support from scratch is one thing, but
having to deal with functions that behave differently or are
not present on a particular OS is much harder to deal with
since it usually touches generic code also used by Linux
and upstream tends to be very cautious (rightly).

Here we will disclose some issues related to OpenBSD
specifics.

Includes order, missing headers
Very often we run into undefined macros or functions that
are due to the order of the included headers. Linux isn’t
really picky about it but OpenBSD is, which would trigger a
compilation failure. On a somewhat related subject, Linux

Puffy The Hobbit

After a recent proposal from Lennart Poettering [1] for GNOME to
include more Linux specific technologies like systemd (and basically
become a Linux-based OS), I thought it would be interesting to
show some of the challenges and constant battle that is to port this
Desktop to BSD systems and more specifically OpenBSD.

What you will learn…
• some OpenBSD internals
• some OpenBSD speci�cs compared to other Unixes

What you should know…
• GNOME core technologies
• basic knowledge of libc functions

The Challenge of Porting GNOME 3 to OpenBSD

08/2011 40

TIPS AND TRICKS Puffy The Hobbit

www.bsdmag.org 41

for example in the communication between dbus (via
GDBus) and PolicyKit.

Unlike Linux (struct ucred) and FreeBSD (struct
cmsgcred) OpenBSD does not support passing SCM_CREDS
over Unix sockets and trying to do so would result in an
ENOTSUP error (where the GLib code would assume any
Unix would be able to do so).

But we needed this to implement g_unix_connection_send_
credentials() and g_unix_connection_receive_credentials()
that expect being able to send and receive a
GunixCredentialsMessage.

After some discussion with upstream, it turned out there
was another way of getting the credentials by looking them
up from the remote peer of the communication endpoint
using g_socket_get_credentials() (i.e. getsockopt(2) with SO_
PEERCRED). This function was never called because as soon
as g_unix_connection_*_credentials() didn’t succeed, we
were left without credentials.

With input from upstream we finally managed to patch the
code so that it would fall back to g_socket_get_credentials()
if sending/receiving the GunixCredentialsMessage failed.

pthreads
Beware, we are entering a world of hacks and despair...

GNOME uses threads heavily (via Gthread from Glib)
which tends to push our userland threads to their limits.
Indeed, on OpenBSD we don’t have support for kernel
threads yet (rthreads is still under development and not
fully functional yet), which means we have to cheat with
file descriptors.

Most threading related issues we face are due to the
fact that pthreads(3) changes all the file descriptors to non
blocking mode and the result is that blocking functions will
fail with EINTR. A good example of that are the g_daemon_
file_{in,out}put_stream_new() from gvfs.

Currently we are forced to patch them and use fcntl(2)
to remove the O_NONBLOCK flags from the FDs. This works
but it’s hackish. Similar workarounds can be found in
other areas of the ports tree and there is currently no
good fix for it.

As a side effect, our Perl is not threaded either, which
means that p5-GLib (the Perl bindings for GLib) are not
functional either which prevents us from porting some
applications.

getpt, ptsname, unlockpt...
Despite being defined by POSIX, OpenBSD always
refused to implement the posix_openpt family of functions.
The reason being that these functions could be subject
to a race condition (i.e. not guaranteed to open a pty
atomically) which is a security hazard.

usually likes to include lots of headers into its header files,
which is not our case and we often run into breakage
because of missing defines.

This issue is quite common but upstream is usually
open to include our patches to fix it (along with the usual
mockery that we are not modern or so).

PAM
For the common crowd, Unix authentication means PAM
(Pluggable Authentication Modules). While it’s true that
most systems use it, this is not the case in OpenBSD
which instead uses bsd_auth(3) (BSD Authentication). While
providing the same core functionality (user authentication
against several sources, like flat password file, Kerberos,
YP...) both work in a totally different ways.

Most of the time, porting to bsd_auth(3) is pretty
straightforward when the actual software also supports
shadow authentication because all that is needed is
replace and adapt the shadow functions by the ones
needed for BSD Authentication. Porting directly from PAM
is more complex.

The problem nowadays is that PAM is declared as a
required dependency, most of the time even shadow
authentication is not supported anymore (GDM, gnome-
screensaver) ... so some autoconf work is also needed in
this case.

It’s interesting to notice that the guys porting GNOME to
Slackware Linux face the same issue as we do because
Slackware does not come with PAM either.

mmap
We ran into an interesting issue porting dconf (the gconf
replacement for storing application configurations in a
local DB, similar to the Windows registry). For some
reason, changes made to the configuration were not seen
by the Desktop, e.g. changing the background would have
no effect until after we logged back in. Trying to get the
value with dconf read would always return the former one
instead of the newly modified one.

Eventually we found out that the reason was due to our
mmap(2): OpenBSD does not implement a coherent file
system buffer cache, so we were missing an msync(2) call
with the MS_INVALIDATE flag to force invalidating the cache
and prevent returning the old value.

This was actually fun to debug and upstream was very
helpful on the matter.

Socket credentials
Several releases ago, GLib implemented Gcredentials,
a wrapper for native credentials used for identifying,
authenticating and authorizing other processes. It’s used

08/2011 42

TIPS AND TRICKS

Harcoded paths
Everywhere in GNOME applications code you can
find hardcoded paths, to binaries, libraries, include
directories... Linux people assume that everything is
always installed under the /usr PREFIX. That is not the
case on any of the BSDs, the default PREFIX for external
applications (i.e. not included in the base system) is
different (OpenBSD and FreeBSD use /usr/local while
NetBSD uses /usr/pkg).

While trivial to fix, these require some grep(1) work to
make sure that everything the application is looking for at
build and run time is correctly found.

Note that this particular issue is not really BSD related,
some Linux distributions (not based on Redhat/Fedora or
Debian) may suffer from this as well in some cases.

Another minor path related issue is that we do not follow
the Linux Filesystem Hierarchy Standard, so we have to
patch applications according to our mtree(8) definitions
(e.g. /var/lib › /var/db).

GNU vs BSD userland
Another common problem for us is the use of non-
standard options in basic utilities such as cp(1), grep(1),
sed(1), find(1) … Several Makefiles and/or configure
scripts use GNU extensions which are not recognized by
OpenBSD leading to build failure or creation of corrupted
files. While spotting build failures is obviously easy, it can
take a while to debug an issue introduced by a corrupted
script or header file.

We usually end up rewriting the incriminated block
using only standard options and push it upstream to
prevent adding a dependency on the GNU versions of the
aforementioned tools (which we have external packages
for).

Same goes with the use of the bash(1) shell with non
standard Bourne shell extensions. While BSDs provide
bash(1) as an external package, it doesn’t come with
the base system and instead of introducing a new
dependency, we do the same as above and rewrite the
block is a more portable way when possible.

From time to time we also run into issues with tar(1):
some projects use GNU options that aren’t available to
us and create archives with a slightly different format (e.g.
Pax headers). Usually fixing this is just a matter of nicely
asking upstream to use standard (i.e. portable) options
when they create their archives.

Linux technologies
This is where lies the core of the most complex issues,
several key functionalities of GNOME are tied to Linux
features.

Manipulating ttys on OpenBSD is done with openpty(3)
but unfortunately it’s not used in the same way as posix_
openpt: some code remain unportable as such without a
rewrite.

Some features are currently suffering from this:

• VTE, the terminal emulator has to use a setgit(3)
helper: gnome-pty-helper, to be able to work.

• Vinagre (VNC client) and gvfs (virtual FS, replace-
ment for gnomevfs) lose the functionality to open an
ssh(1) session using a password.

time_t
Another case where OpenBSD deviates from most Unix
systems is that our time_t is not 64 bits wide. This needs
careful inspection of GCC warnings during compilation
because some applications would happily overflow since
no check is made to see what time_t is defined as.

This particular issue triggered crashes in at least
evolution and gnome-keyring.

Monotonic clock
OpenBSD has support for the MONOTONIC clock,
however applications cannot detect it properly because
we are missing most of the _POSIX_* defines in our
unistd.h. We also don’t have sysconf(3) variables support
for it.

Until we fix this, we have to patch the applications
but where it gets tricky is that some of them assumes
that if we define POSIX_MONOTONIC_CLOCK we also support
the pthread_condattr_setclock(3) function which we
currently don’t because of our userland threads
implementation.

/proc
OpenBSD comes with minimal support for the process
file system (i.e. /proc), however it is only available on
the i386 platform, not mounted by default and generally
considered as deprecated and non maintained. So in a
word, we do not use it.

Instead of accessing /proc to get information about
processes, what we do is patch the code to use our kernel
memory interface (kvm(3)).

A very good example can be seen in the commit ID a
d9da2727d3e3243fd052c9feb0c55645e87d384 in gtk+ which adds
support for GmountOperation::show-processes on OpenBSD.

Linux-isms
In this section we will talk about the most common (usually
trivial but annoying) issues introduced by developers only
knowing or caring about Linux.

Puffy The Hobbit

www.bsdmag.org 43

The difference with the previous chapter is that these
functions usually do not make use of Linux specific
interfaces, but wouldn’t work on other systems out of the
box because the system calls can be different, or any
other reason. That is perfectly OK and it is part of our
job to port these functions to whatever OS we want to
support.

Working with upstream
Bugzilla: https://bugzilla.gnome.org/ is where all major
contact with upstream takes place.

GNOME is not really a fully bundled Desktop
environment but instead consists of separate modules
that can be put together. This in an important fact when
dealing with upstream because the feedback can be
totally different between applications maintainers.

We’ve had some great experience working with some
upstream projects where we learned a lot about the
corresponding application itself or the way GNOME
code is structured. Some maintainers are very opened
to supporting other systems and committing portability
patches.

Unfortunately this is not always the case and we have
several bug reports that are rotting without any feedback
from the developers. There is no easy way around that
and it can become quite a frustrating and challenging task
to find someone willing to review a patch, let alone commit
it.

How can OpenBSD bene�t upstream projects
Despite the obvious benefit to get more users (hence more
testers), GNOME can also take advantage of supporting
OpenBSD in several ways.

First OpenBSD is a very good platform to find bugs :-)
Since we support many different hardware architectures,
it is not uncommon for us to run into issues not seen
under x86/x86-64 like different endianness for example.
Some of our architectures run on very slow hardware
(ARM, SPARC...) which are usually good at finding race
conditions in software.

Our toolchain, malloc(3) and limits (which are way lower
than on Linux, i.e. not unlimited) are also very good at
finding buffer overflows, memory leaks and alike: we
usually run into these very fast where it would be detected
on Linux only under the right circumstances.

As we will see in the next section, gnome-shell isn’t
available on OpenBSD yet. As a nice side-effect this
means that we are forced to use the gnome-fallback
session as our daily desktop. Obviously, upstream doesn’t
test the fallback session as intensively as the regular one:
as a result we encountered some bugs and pushed a

One (in)famous example is the udev device manager
(which deprecated HAL). None of the BSDs has
full support for it. There are several reasons to that,
first because some of the features it implements are
already present in BSDs but under some other form
(like hotplugd(8) on OpenBSD). Also, porting this kind of
interface usually requires intrusive kernel changes which
cannot always be made due to the intrinsic differences
of the systems. Another reason is that the documentation
is often incomplete or outdated which means the porter
needs to have a good understanding of the Linux kernel
itself to see how it is implemented there. Finally Linux
has a tendency to deprecate their hardware abstraction
layer very often and keeps re-inventing it. Not long after
FreeBSD got HAL support working it was pretty much
starting to get obsoleted by udev.

The main issue here is the lack of communication
between the projects, basically BSDs systems are forced
to implement whatever Linux came up with, instead of
discussing beforehand how such feature could be done,
which functions should do what... Linux being a leader
at implementing new functionalities, it is up to the BSDs
people to try and be closer to their development so we can
add our voice about how things could be done to benefit
most systems.

Of course, when dealing with software that were
designed to be run only on Linux and whose author
refuses portability patches as is the case with systemd,
there isn’t much room for discussion and this is why such
software should never become a mandatory dependency
in my opinion.

Another thing is often noticed, and more recently spelled
out by some people in the Linux crowd: being a leader in
implementing new technologies and features, they tend
to think that BSDs just need to catch up. However one
cannot expect everyone to modify their kernel to run the
latest desktop technologies...

I think the Xfce 4.8 release announcement [2] makes a
very short yet accurate summary of the problem non Linux
systems are facing with regard to desktop environments.

Another subsystem worth mentioning that can be an
issue is inotify (filesystem change monitoring). BSDs
systems implement such a feature using kqueue(2) which
has a completely different interface. That said, some
applications have been successfully ported (like gamin).
There are of course more to it than these two examples...

Unimplemented features
Several functions defined in GNOME applications are
ifdef __linux__ and left as a porting exercise for other
systems, while using fallback stubs in the meantime.

https://bugzilla.gnome.org/

08/2011 44

TIPS AND TRICKS

couple of patches that fixed some minor yet annoying
issues.

Some examples of recent projects where OpenBSD
helped discovering issues not seen on most Linux
configurations are pygobject and dconf.

Current showstoppers
Mesa: As mentioned before, gnome-shell hasn’t been
ported to OpenBSD yet. The reason is that we cannot
update the clutter package due to a bug in Mesa (the
OpenGL graphics library used by X.org). This bug is quite
bad as it would either crash the application itself or the
entire X session.

Several people are actively working on this but the issue
has yet to be found.

GDM
GDM 3.X is currently in a non functional state on
OpenBSD. It relies on many PAM functions and the
porting to bsd_auth(3) hasn’t been done yet. Before moving
forward on this we are waiting on feedback from the
gnome-screensaver developers regarding our bsd_auth(3)
patch there. So far we’ve been ignored...

Misc
While being worked on, several other functionalities are
still either missing or incomplete on OpenBSD.

• pulseaudio – This (in)famous and controversial sound
server hasn’t been ported yet. Most of the time we
can do without it, except for the media key plugin in
gnome-control-center that we have to patch out since
unfortunately pulseaudio is a required dependency
(used to control some multimedia aspects of the desktop
like volume... with keys from a multimedia keyboard)

• network-manager – This is a piece that will probably
never be ported to OpenBSD. So far we haven’t lost
much by not having it. We did get scared for a little
while when the epiphany developers added it as a
required dependency but this was made optional
after we told them this would prevent epiphany from
running on systems which do not have network-
manager.

• libgtop2 – A huge amount of work was made recently
in porting missing functions. Despite the use of a
temporary hack to get open files statistics (using
lsof(8)), everything now works natively.

• avahi – Basic functionality works fine, but we don’t have
support for the autoipd feature (and probably never will).
There is one important missing feature that we have to
port: the chrooting of the daemon. Currently it is done
using capabilities which we have no support for yet.

• accountsservice – While technically a Freedesktop.org
project, it’s used heavily by gnome-settings-daemon
and the gnome-control-center. This software is a good
example of how people develop having only Linux in
mind. Most paths are hardcoded and spawned utilities
assume Linux behavior (usermod(8), chkconfig...).
There is currently work to create an external helper for
OpenBSD.

Conclusion
As we’ve seen there are numerous challenges in porting
GNOME to OpenBSD. In the end this effort is good for
both sides: upstream who gets more users and more bug
reports and fixes for issues that were hidden or not easily
seen on Linux and OpenBSD because it forces us to keep
up with all the required technologies.

I think it is very nice that we can provide a Joe User
Desktop on top of the most secure Operating System and
according to the GNOME portability matrix [3], we are
getting very close :-)

I would like to mention the tremendous work done by
the gnome@FreeBSD.org team which really helped us
starting on the right tracks some years ago, and more
specifically Joe Marcus Clarke (marcus@FreeBSD.org)
for his great contributions into making BSDs a better
supported platform for GNOME.

Note that I’m not the only one involved in all this
work, I’ve been sharing the entire burden for several
years with another hobbit: Jasper Lievisse Adriaanse
(jasper@openbsd.org), so big thanks to him obviously!

Currently we have two OpenBSD developers with
commit access to the GNOME git repository, Jasper and
Jonathan Matthew (jmatthew@openbsd.org) so I will try
and convince them of removing Linux as a supported
platform and help making GNOME an OpenBSD only
Desktop ;-)

On the ‘Net
• systemd as external dependency – https://mail.gnome.org/

archives/desktop-devel-list/2011-May/msg00427.html [1]
• Xfce 4.8 released – http://www.xfce.org/about/news/?post=

1295136000 [2]
• GNOME portability matrix – http://live.gnome.org/Portability

Matrix [3]

ANTOINE JACOUTOT
Antoine Jacoutot is an OpenBSD committer who lives in Paris,
France. He is responsible for more than 300 packages, wrote the
sysmerge(8) utility and is part the OpenBSD rc.d(8) framework
development. He runs OpenBSD for pretty much everything.

http://Freedesktop.org
malto:gnome@FreeBSD.org
mailto:marcus@FreeBSD.org
mailto:jasper@openbsd.org
mailto:jmatthew@openbsd.org
https://mail.gnome.org/archives/desktop-devel-list/2011-May/msg00427.html
https://mail.gnome.org/archives/desktop-devel-list/2011-May/msg00427.html
http://www.xfce.org/about/news/?post=1295136000
http://www.xfce.org/about/news/?post=1295136000
http://live.gnome.org/PortabilityMatrix
http://live.gnome.org/PortabilityMatrix

http://hakin9.org/en

08/2011 46

LET’S TALK What It Takes – Starting and Running an Open Source Certification Program, Part III

www.bsdmag.org 47

Then in Part II we talked about Processes – how to
get the Certification Program set up as a business
and how to start up the exam development effort.

This month we’ll look at Technology – what kinds of tech
you can use to get things done. Most of the items in this
article are about well known topics- websites, monitoring,
collaboration tools, and so forth, so we won’t go into
elaborate detail. If you would like more detail, drop us a line
at info@bsdcertification.org and we’ll be happy to oblige.

Website
It seems every business has a website these days. It’s
the easiest, simplest way to hang out your shingle for
everyone to see. Because it’s a public facing system, you’ll
want to consider the security of the system in its design
and operation. For our BSD Certification Group (BSDCG)
website, we naturally chose a BSD operating system.
Fortunately, BSD systems have several different packages
for webservers and administration tools. As with any
website, it’s best to keep the operational requirements to
a bare minimum. In Part II we noted that while we do have
a website, none of our certification test items (questions or
answers) are on that site. We wanted to make sure our site
was always available, so we engaged with a group in Brazil
to set up a mirror. We currently use rsync to synchronize
any changes we make on the primary system to the
synchronized secondary system. There is no cost and
relatively little overhead with this approach .

Monitoring
You should install intrusion detection and prevention /
monitoring tools such as Snort or Suricata. These tools

can alert you when you have a problem such as a denial
of service attack or an unauthorized login. In some cases,
your hosting provider can provide additional protection
by filtering upstream traffic. Keep in mind that any
configurable security measures should be under some
form of change control. This will help you if you decide to
get your Certification Program accredited by ANSI/ISO as
we discussed in Part II.

Surveys
You’ll occasionally need to poll your user community
for information, such as what kinds of certifications to
develop, or what the name(s) should be. Taking a survey
and producing usable reports can be a challenge. There
are commercial tools such as SurveyMonkey, SurveyFrog,
Zoomerang, and others. If, as we did, you want to stay as
much open source as possible, there are tools such as
FreeOnlineSurveys, and phpESP.

We found that we could not use some of the ‘free’
tools since they provided only limited service such as
only 12 questions, 100 responses, and 10 days active. If
your needs go beyond the limitations of these free tools,
consider hosting your own survey with your own software.
We found phpESP to be easy to integrate into one of our
BSD hosts. Survey creation and use was tolerable, but
we found ways to automate the basic tasks using some
perl scripting and knowledge of SQL. This allowed us to
rapidly create surveys with hundreds of questions, and
since we hosted it ourselves, we could control the active
time and number of responders. If this is the way you want
to go, keep in mind that you’ll need some technical know-
how for databases, scripting, other technical tasks.

What It Takes

This is the third part in our series on what it takes to run an
Open Source Certification Program. In Part I we discussed
“People”, the kinds of people you will need to help you run a
Certification Program for your most excellent software.

Starting and Running an Open Source Certification
Program, Part III

mailto:info@bsdcertification.org

08/2011 46

LET’S TALK What It Takes – Starting and Running an Open Source Certification Program, Part III

www.bsdmag.org 47

Open Source Certification Program with nothing but paper
and pencil, but it very quickly becomes unsustainable.
There will be hundreds, possibly thousands, of items
and answers. And there will be plenty of errors and
corrections. Computerizing your construction and delivery
are essential.

The discussion in this section centers on creating and
maintaining your item collection within your own systems.
If / when you migrate to an online test creation systems
such as Schroeder Measurement Technologies (SMT)
your test creation, delivery, and scoring procedures will
be completely different. However, the basic concepts will
remain the same.

Item Collection and Management
The BSDCG started out with item collections as just
word processing documents, mostly in Open Office.
These were easy to organize and exchange with our
psychometrician. They were also easy to distribute to our
SMEs when we had question writing sessions. And while
these SME sessions generated a number of edits across
several documents, it wasn’t that much work to keep it all
straight. The problem was pushing out questions into an
actual exam.

Form Creation
Psychometricians and exam creators use special
terminology when describing exam construction. A form
is the name given to the collection of items that will be put
onto an exam. Creating our exam forms required several
steps as outlined in this simplified view:

• Collecting items by knowledge domain. Knowledge
domains and objectives were developed during the
Job Task Analysis. In this step, we are collecting
actual items to be used on the exam.

• Ensuring that all the objectives are covered by at
least one item, and ensuring that only the highest
quality items get put onto an exam. This is done in
item writing sessions with Subject Matter Experts.

• Drafting up a form by copying selected items from
each domain and randomizing the order on the
form.

• Double checking to ensure the percentages of
all items for each domain are correct. The exam
objectives document contains the percentage for
each domain established by the psychometrician.

• All forms are vetted and approved by the
psychometrician before use. This usually requires a
beta period where items are tested for psychometric
correctness.

Collaboration
By now, you’ve got hundreds, maybe even hundreds of
thousands of people using your software and there is a
lot of buzz. People need to communicate, and it’s your job
to enable them to do that in multiple ways. Fortunately,
that’s what the Internet excels at- communication and
collaboration. We set up several mailing lists with GNU
Mailman. We have one for our public discussions about
our Certification Program and our announcements,
one for our private business discussions, one for our
infrastructure team to keep up with configurations and
changes, and one for our Subject Matter Experts (SMEs).
Mailman is easy to administer and has proven capable of
easily handling our workload. For real time discussion and
collaboration, we use Internet Relay Chat (IRC). We have
our #bsdcert channel set up on freenode.net. This also
serves as a friendly chat forum for us as well.

With the rise of social networking we’ve taken
advantage of groups on LinkedIn and Facebook. These
groups allow us to immediately reach hundreds, even
thousands of people with daily or weekly updates. It’s also
where we can reach out to the community for advice and
support our initiatives such as new surveys, new exams,
or collaboration on editing reports.

For additional collaboration, consider an open source
document management system (also known as a content
management sytsem – CMS). There are some excellent
CMS systems in use such as Plone or Drupal. Some
of them are very easy to use. If you decide to manage
your content in one of these systems, consider getting a
support contract with a firm that specializes in supporting
that software. You will get timely notification of bugs and
security holes- and hopefully fixes for your money.

Candidate Registration
All certification systems need a way to identify each
candidate with some form of identification number.
The BSDCG developed an on-line application to take
the candidate information and give them a registration
number. This number is used to identify the candidate
within the BSDCG internal systems, not on any public
website. Registration numbers are also used when
printing exam results and certificates.

Eventually we plan to have another web based system to
enable employers to verify whether a prospective employee
is BSDCG certified. For now, this function is performed
manually, via email to chair@bsdcertification.org.

Test Construction and Delivery
Test construction and delivery will be your biggest
challenge over time. It is possible to start and run an

mailto:chair@bsdcertification.org

08/2011 48

LET’S TALK What It Takes – Starting and Running an Open Source Certification Program, Part III

www.bsdmag.org 49

• A copy of the exam form is printed and stapled
together by the exam shipper. Each BSDA exam is
about 12 pages long.

• Immediately after printing, the exam form is sealed
with an adhesive tab.

• The first page of the exam form consists of a Non-
Disclosure Agreement indicating that, by opening the
seal, the candidate agrees not to discuss any aspects
of the exam. The candidate is required to sign the
agreement before continuing with the exam.

• The sealed exam form, a single answer sheet, and
one blank colored sheet of paper are put into a
numbered manilla envelope. The colored sheet is
available for the candidate to write down any issues
they have with any question. It gives them the chance
to indicate that a question was unclear, if they thought
the answers were all wrong, or any similar issue.

• The envelope is sealed. Special BSDCG packing tape
is placed across the seal to prevent tampering. Only
the exam candidate is permitted to open the envelope
seal, and the exam seal. Once they are finished
with the exam, they are required to place the exam
form, answer sheet, and colored paper back into the
envelope and reseal the envelope, writing their name
across the seal.

• We maintain an internal spreadsheet that contains
the candidate name, exam form number, and the
envelope number as well as the date and location of
the exam and the name of the proctor. These details
are important if it later becomes obvious that there
were problems with the exam session.

• The same procedures above are performed for
all candidates at a particular exam session. The
collection of sealed exam packs are then boxed up
and mailed directly to the proctor. Included in the
box are the proctor directions and a list of candidates
expected for that session.

If you are mailing internationally, you’ll need to allow plenty
of time for the materials to reach the proctor before the
exam. Six weeks lead time is highly recommended.

Proctoring the Exam Session
On the appointed day, the proctor arrives at the exam
location, and sets up the exam session room. Proctors
are required to check the identification of each candidate
(a government issued photo ID is required). The candidate
is given their exam packet and told to have a seat until the
start of the exam.

Once the proctor begins the exam session, no further
candidates are allowed into the exam session. The

This results in the actual form to be used by the exam
candidate. That form is now ready for packaging and
delivery.

Exam Survey
At the end of every exam form we include a short survey.
The exam instructions ask the candidate to fill out the
survey before returning the exam materials back to the
proctor. This survey is about the exam session itself
– Was the room quiet? Was it too hot or too cold? Did
the proctor explain the procedures clearly? Were there
any disruptions during the exam, etc. Getting personal
feedback about the exam session is important, and is
required for accrediting your Certification Program. Plus,
it gives the candidate a chance to communicate directly
with the exam program administrators. With all BSDCG
exams, we read every survey and take note of every
comment.

Answer Sheets
You will want to discuss scoring the results of the exam
with your psychometrician. To be effective and reliable,
the scoring must be independent of the exam delivery
process. Your psychometrician may want to use specific
equipment or have you engage with a separate company
to score the exam and report the results.

In our case, we engaged Dr. Sandra Dolan to score the
exam for us as part of her contract. She uses a scoring
machine that reads the Pearson NCS MM4521-3 Answer
Sheet. These forms, familiar to almost anyone who has
ever taken a certification exam, are commonly known as
bubble sheets. Each item has a row of tiny circles (A, B, C,
D, E) for answer marks. The form also has a place for the
candidate name, birthdate, and some identification codes.
Note that these forms are copyrighted by Pearson NCS
and must be purchased, not copied, for use.

Packaging and Test Delivery
Paper and pencil exams have very specific procedures
that must be followed in order to protect your exam
content. You can’t just send a bunch of copies in an
envelope and mail it to the proctor. If you do that, you have
no way of knowing if the contents were copied or stolen
by another candidate, the proctor, or someone else. In
fact, when followed, the procedures below permit only the
exam shipper who has already signed a Non-Disclosure
Agreement and the candidate themselves to actually view
the exam. No one else, including the proctor, will be able
to view the actual exam with these procedures.

Here are the packaging procedures we use in the
BSDCG:

08/2011 48

LET’S TALK What It Takes – Starting and Running an Open Source Certification Program, Part III

www.bsdmag.org 49

proctor reads the exam instructions, verifies that everyone
is ready, and starts the clock.

At the end of the exam, the proctor (as noted above)
directs the candidates to place the exam form, answer
sheet, and colored paper back into the envelope and
reseal it, writing their name across the seal. Sealed exam
packs are boxed back up and returned to the BSDCG for
scoring.

Scoring and Reporting
The exam packs are returned to the exam shipper who
checks each pack for completeness, reads the sign-
in sheets, the exam survey, and all notes which are
recorded. A copy of the answer sheet is archived and
the orginals are sent to the psychometrician. The actual
exams are also archived and securely stored at the
BSDCG home office.

Scoring the exam is performed by the psychometrician
to ensure proper separation of duties for exam delivery
and scoring. The scoring activity itself is automated.
Answer sheets are fed into a special reader (Scantron
iNSIGHT 4ES, OpScan 4ES, or similar reader) which
uses special software.

The raw answers for each scan are captured and are fed
into additional software used for psychometric analysis.
This is an important aspect of the scoring procedure.
During this analysis, the psychometrician can compare
the results from a single test to other recent exam scores.
For example, the analysis can reveal whether an item
is consistently being answered incorrectly – indicating
a poorly worded item or answer set. It can also reveal
if there are too many commonalities in answers among
a group of candidates in one exam session – indicating
possible cheating. This analysis is vital to the integrity of
the Certification Program.

Once the items are scored it is time to communicate
with the candidate whether they passed or failed. A PDF
report indicating whether they have passed or failed is
generated and sent to the candidate. If the candidate
passed, a certificate is printed, an individual foil seal is
applied to the certificate, the remaining third signature is
added, an ID card and welcome letter are printed, and all
are mailed to the candidate.

Assessing the Program’s Effectiveness
How will you know if your Certification Program is
successful? Money is one obvious answer, but not the
only one. You’ll be successful if you can demonstrate
that your program is effective in supporting your most
excellent software. Below are some metrics that may be
useful in tracking effectiveness:

JIM BROWN
Jim Brown has worked in the computer industry with continuous
Unix involvement in development or administration since the
early 1980s. His experience includes applications, systems
and database programming, in a variety of languages. One of
the founders of the BSD Certi�cation Group, he is helping to
develop the BSD Professional certi�cation. He currently lives in
Northwest Arkansas, USA.

• Registrations – How many people are interested in
your Certification Program enough to actually register
to take the exam? While more registrations are
better overall, there are several reasons why people
will register and then not actually take the exam –
lack of time, distance from a test center, a change
in personal goals, and others. On the other hand, a
continual stream of registrations shows that there is
still continued interest.

• Tests Given – How many tests sessions have been
scheduled and completed? This is a concrete number
of people who have registered, paid, shown up and
actually taken the exam and is a very useful metric.

• Candidates Pass / Fail – The number of people who
pass and the number of people who fail the exam are
very useful indicators about the quality and validity of
the exam. Consider the extremes. If everyone failed,
the exam wasn’t focused on the objectives, or the
items were somehow distorted. If everyone passed,
the items were too easy. Your psychometrician will
help determine the best pass / fail ration for your
Program.

• Usefulness – How many candidates took the exam
and were able to advance their careers with this new
certificate? If candidates can show their certificate to
a prospective employer who recognizes the value of
the Certification Program, you are definitely on the
right track.

• Buzz – Does your Certification Program have industry
buzz? Are media pundits, bloggers, and technology
journalists aware of your program? This is a very
useful, if ephemeral metric. Enjoy it while it lasts.

Conclusion
You’ve built your software. You’ve built a community of
dedicated People. You’ve set up your Procedures and your
Technology as you’ve built your Certification Program.
Now all you have to do is conquer the technology world.
Carpe Diem!

Next issue is coming in
September!

In the next issue:

- ArabBSD
- Porting of libgtop2 to OpenBSD
- Dtrace on FreeBSD
- and Other !

http://bsdmag.org

http://www.hacktivity.com

�������������������������������������
��������������������������

���

���

��

����������������
����������������������������������

������������������������������������
��������������������������������

http://www.ixsystems.com/

	Cover

	Dear Readers
	Contents
	Getting Started with
FreeNAS™ 8.0.1
	Your BSD ‘App Store’with pbulk: Building everything in pkgsrc with automation using
DragonFlyBSD
	mfsBSD The Swiss Army Knife for FreeBSD system administrators

	How To Make Memory File
System In FreeBSD
	Manipulating map data using QGIS In this article, we will examine how to create and
manipulate shapefiles

	IP Version 6: Open with
Care
	Puffy The Hobbit The Challenge of Porting GNOME 3 to OpenBSD

	What It Takes Starting and Running an Open Source Certification
Program, Part III

