

��
�������������������������������������
���

���������������
��
��

�������������

� ������������������������������������
��
�������������������������� �����������������������������������
������������������������������ ����������������������������������
���������������������������� ������������������������������
��
��������������������� ���
��� ��
��
�������������������� ����������������������� �������������������������������������
���������������������������� ��������� ������������������������������
�����������������������������������

������� ����������������������������

��
���
��
��
��
��
��������������������

���
��

��
��������������������������������������

��������

���������

����������

�������������
��������

http://www.ixsystems.com/

��
�������������������������������������
���

���������������
��
��

�������������

� ������������������������������������
��
�������������������������� �����������������������������������
������������������������������ ����������������������������������
���������������������������� ������������������������������
��
��������������������� ���
��� ��
��
�������������������� ����������������������� �������������������������������������
���������������������������� ��������� ������������������������������
�����������������������������������

������� ����������������������������

��
���
��
��
��
��
��������������������

���
��

��
��������������������������������������

��������

���������

����������

�������������
��������

http://www.ixsystems.com/

06/20114

CONTENTS

Zbigniew Puchciński
Editor in Chief

zbigniew.puchcinski@software.com.pl

Editor in Chief:
Zbigniew Puchciński

 zbigniew.puchcinski@software.com.pl

Contributing:
Ivan „Rambius” Ivanov, Josh Paetzel, Dru Lavigne, Antoine

Jacoutot, Justin C. Sherrill, Kris Moore, Rob Somerville, Sufyan
bin Uzayr, Erwin Kooi, Michael Hernandez, Girish Venkatachalam,

Mohammed Farrag, Jim Brown.

Proofreaders:
Sander Reiche, Christopher J. Umina

Top betatester:
Josmar Calin de Pierri, Daniel Cialdella Converti

Special Thanks:
Denise Ebery, Matt Olander, Rafał Jaworowski

Art Director:
Ireneusz Pogroszewski

DTP:
Ireneusz Pogroszewski

Senior Consultant/Publisher:
Paweł Marciniak pawel@software.com.pl

CEO:
Ewa Dudzic

ewa.dudzic@software.com.pl

Production Director:
Andrzej Kuca

andrzej.kuca@software.com.pl

Executive Ad Consultant:
Ewa Dudzic

ewa.dudzic@software.com.pl

Advertising Sales:
Zbigniew Puchciński

zbigniew.puchcinski@software.com.pl

Publisher :
Software Press Sp. z o.o. SK

ul. Bokserska 1, 02-682 Warszawa
Poland

worldwide publishing
tel: 1 917 338 36 31
www.bsdmag.org

Software Press Sp z o.o. SK is looking for partners from all over
the world. If you are interested in cooperation with us, please

contact us via e-mail: editors@bsdmag.org

All trade marks presented in the magazine were used only for
informative purposes. All rights to trade marks presented in the

magazine are reserved by the companies which own them.

The editors use automatic DTP system

Mathematical formulas created by Design Science MathType™.

Here it is!

We are back and present you with the June issue
of BSD magazine. As you may have noticed, this
month’s issue is a little bit thicker than usual and we
hope you enjoy all the content!
We get started with Ivan Rambius Ivanov and his
„Introduction to OpenSSL: Command line Tool”
article followed by the What’s New section
where you will �nd a short summary of the BSDCan
2011 conference written by Josh Paetzel, and Dru
Lavigne who will introduce us to the recently released
FreeNAS 8.0.
In the Developers Corner we will meet Antoine
Jacoutot describing an OpenBSD success story, Justin
C. Sherrill sharing news about the Dragon�yBSD
project, and Kris Moore who shows us how to install
FreeBSD with the PC-BSD installer – PC-SYSINSTALL.
In this months How-Tos Rob Somerville introduces
us to GIS in what seems to be a promise of another
series of his. Then you will �nd Sufyan bin Uzayr’s
article teaching how to deploy a Cloud OS on BSD,
and the third part of the Mutt series written by
Michael Hernandez.
Also in How-Tos you will �nd a cover story –
„NanoBSD and ALIX” written by Erwin Kooi.
In the Let’s Talk section we have articles from Girish
Venkatachalam and Mohammed Farrag, as well
as a �rst of BSD Certi�cation articles written by Jim
Brown.
In the end we prepared an Interview with Rafał
Jaworowski from Semihalf – an embedded hardware
and software developing company which makes
great use of BSD in their work.

I wish you have a good read and feedback is always
welcome!
Thank you!

Contents

www.bsdmag.org 5

Exploring The Powers Of The Cloud
Deploying eyeOS On BSD
Sufyan bin Uzayr

Ever thought of running things in the cloud? How about doing
that from your own server, without any extra effort or cost?

NanoBSD and ALIX
Erwin Kooi

In the previous issue of BSD Magazine, Bill Harris
described how to do a basic installation of FreeBSD on a
PC-Engines ALIX board with a Compact Flash card.

Mutt On OS X Part III
Michael Hernandez

In this article, I’ll go into setting up Mutt to make the
most of Gmail’s features, as well as a way to handle
attachments on your Mac.

Let’s Talk
OpenBSD Networking
Girish Venkatachalam

OpenBSD has an often mistaken image across the world that
it stands for cryptography and crypto alone. Only for security
applications OpenBSD is a good choice. This is what I used
to think till I started looking at its IPsec stack in 2003.

OMAP3 Full Support is Coming Soon in
FreeBSD
Mohammed Farrag

The trend in the FreeBSD development is bringing
FreeBSD for new sets of hardware. The OMAP™ 3 family
of multimedia applications processors from TI introduces
a new level of performance.

What It Takes Starting and Running an
Open Source Certification Program, Part I
Jim Brown

So you’re all excited about your new software and its
amazing capabilities to change the world. You truly
believe that if only more people knew about it and were
competent at using it, the world would be revolutionized.

Interview
Interview with Rafał Jaworowski
BSDmag team

Rafal Jaworowski is a co-founder of Semihalf, where he is
leading the operating systems department. He contributes
to the FreeBSD Project as a src committer.

Get Started
Introduction to OpenSSL: Command-line
Tool
Ivan ‘Rambius’ Ivanov

The article describes the command-line utility of openssl.
It is a tool that supports encryption and decryption,
message digests, key generation and exchange and ssl
channel manipulations.

What’s New
BSDCan
Josh Paetzel

Josh has prepared a short summary of BSDCan 2011
conference.

Introducing FreeNAS 8.0
Dru Lavigne

On May 2, 2011 the much anticipated redesign of FreeNAS
was released. This article introduces FreeNAS 8.0.

Developers Corner
A Puffy In The Corporate Aquarium.
Success story: OpenBSD as an
Enterprise Desktop
Antoine Jacoutot

While OpenBSD is well known for its use in infrastructure
services (MTA, DNS, firewall...) or appliances, this
article will focus on a less known application: the use of
OpenBSD as a Joe User Desktop.

DragonflyBSD news
Justin C. Sherrill

Installing FreeBSD with PC-SYSINSTALL
Kris Moore

Several months ago, the PC-SYSINSTALL system (The
installer for PC-BSD 8.0 and higher) was merged into
FreeBSD CURRENT, in preparation for FreeBSD 9.0.

How Tos
An introduction to GIS on FreeBSD
Rob Somerville

Geographic information systems (GIS) are rapidly gaining
popularity both commercially and on the Internet, and
used with location aware devices such as mobile phones
can be a powerful tool for aiding productivity.

06

13

20

34

14

25

26

30

38

44

46

48

50

54

06/2011 6

GET STARTED Introduction to OpenSSL: Command-line Tool

www.bsdmag.org 7

The OpenSSL project is an open-source
implementation of SSL and TLS protocols and a
general-purpose cryptographic library. Its command-

line tool is a client of the library and is widely known as it is
used to create SSL keys and certificates for web servers.
It supports many other cryptographic operations which
makes it versatile, but also complicated with more than 100
subcommands and a myriad of options.

OpenSSL comes preinstalled in all base systems of
BSDs. In case the preinstalled version is outdated you
can install a newer one as a port or package. FreeBSD
and NetBSD have it under security/openssl in the ports
and pkgsrc trees.

To verify your installation of openssl execute the
command shown on Listing 1.

Basic Terminology
Cryptography is the practice and study of hiding
information. It studies the schemes of converting some
original intelligible data into some unreadable data. The
schemes usually take as input a plaintext, feed it to an
encryption algorithm along with some keys and produce
a ciphertext. A decryption algorithm reverts the ciphertext
to the plaintext.

The secrecy of the scheme must depend only on
the secrecy of the keys and not on the secrecy of the
algorithm.

An attack on a cryptographic system is an attempt to
compute the plaintext or the keys of the system. The
attacker is assumed to know the encryption and the
decryption algorithms and to possess a considerable
number of ciphertexts.

The attacks can be ciphertext-only, known-plaintext,
chosen-plaintext and chosen-ciphertext. The ciphertext-only
one is the default – the attacker is supposed to eavesdrop on
the communications and capture the ciphertext – otherwise
with no possibility of eavesdropping, there would be no
need to encrypt the data in the first place. In the known-
plaintext attack the attacker knows both some plaintexts
and their corresponding ciphertexts. The chosen-plaintext
one is similar, but the attacker knows the ciphertexts of the
plaintexts she chooses. In the chosen-ciphertext attack the
attacker knows the ciphertexts of chosen plaintexts and the
plaintexts of chosen ciphertexts. Finally, there is also the
brute-force attack in which the attacker tries all possible keys
in order to find the one used in the scheme.

If one key is used for encryption and decryption, we
speak of symmetric encryption. If one key is used for
encryption and another for decryption, we speak of
asymmetric encryption.

In case of symmetric encryption the key, called symmetric
or secret or shared, must be exchanged between the two
parties before the communication begins. In asymmetric
encryption schemes each party has a pair of keys – one

Introduction to OpenSSL:
Command-line Tool
The article describes the command-line utility of openssl. It
is a tool that supports encryption and decryption, message
digests, key generation and exchange and ssl channel
manipulations.

What you will learn…
• basic concepts in cryptography
• Encrypting / Decrypting �les with OpenSSL
• Signing and verifying documents

What you should know…
• basic shell scripting

06/2011 6

GET STARTED Introduction to OpenSSL: Command-line Tool

www.bsdmag.org 7

a block and then we encrypt the P
i
’s to ciphertext blocks

C
1
C
2
...C

n
.

The block ciphers can operate in several modes
depending on how they relate the different plaintext and
ciphertext blocks. The modes can be Electronic Codebook
(ECB), Cipher Block Chaining (CBC), Cipher Feedback
(CFB) and Output Feedback (OFB) and Counter (CTR).
We will quickly describe ECB and CBC.

ECB simply encrypts each block of plaintext
separately:

C
i
= E(K, P

i
), for i = 1, ..., n,

where K is the shared key. This mode is vulnerable to
dictionary attack because if two plaintext blocks are equal
the corresponding ciphertext blocks are also equal and
that reveals at least some information about the message.

The CBC mode fixes this vulnerability of ECB by XORing
a plaintext block with the previous ciphertext block. For
the first plaintext block it uses an initialization vector IV:

C
0
= IV

C
i
= E(K, P

i
өC

i-1
) for i = 1, ..., n

The initialization vector can be chosen in several
ways including a randomly generated one for each
communication session. The IV has to be known to the
decrypting side so the the ciphertext is C

0
C
1
...C

n
 instead of

C
1
...C

n
 that is, it is one block longer that the plaintext.

Two popular block ciphers are DES and AES. The
commands that do DES encryption are des-cbc for CBC
mode, des-cfb for CFB mode, des-ecb for ECB mode and

private and one public key. The private key must be kept
secret and should not be shared with anyone, including
any other participant in the communication. The public
key can be distributed freely.

Symmetric Ciphers
OpenSSL supports a wide variety of symmetric ciphers.
We can obtain the full list of the subcommands that do
symmetric encryption with the command from Listing 2.

The OpenSSL command that encrypts and decrypts data
is enc. By default it encrypts the input and when it is given its
-d option it decrypts it. The cipher is given as another option
and can be any name shown by list-cipher-commands.

The symmetric ciphers can be of two types: block or
stream.

The stream ciphers generate a keystream of random
data from a seed and usually XORs it with the plaintexts.
RC4 is a popular stream cipher and Listing 3 shows how
to encrypt with it. We decrypt by passing the -d option of
the command enc, see Listing 4.

The block ciphers work on fixed-sized blocks of input.
When we want to encrypt a plaintext P that is longer than
that size we split it into blocks P

1
P
2
...P

n
. If the data’s length

is not a multiple of the block’s length, we may need to
pad the last chunk P

n
 with additional bytes in order to form

Listing 1. Showing OpenSSL Version

$ openssl version

OpenSSL 1.0.0d 8 Feb 2011

Listing 2. List Supported Ciphers

$ openssl list-cipher-commands

Listing 3. RC4 Encryption

#!/bin/sh

echo "Test is a message" > message.txt openssl enc

-rc4 -salt -in message.txt -out

message.rc4 \

-pass pass:testpass

Listing 4. RC4 Decryption

#!/bin/sh

openssl enc -d -rc4 -in message.rc4 -pass pass:testpass

Listing 5. DEC ECB Encryption

#!/bin/sh

echo "This is a message" > message.txt openssl enc -des-

ecb -salt -in message.txt -out \

message.desecb -pass pass:testpass

Listing 6. DEC ECB Decryption

#!/bin/sh

openssl enc -des-ecb -d -in message.descbc -pass \

pass:testpass

Listing 7. DEC CBC Encryption

openssl enc -des-ecb -salt -in message.txt -out \

message.descbc -pass pass:testpass

06/2011 8

GET STARTED Introduction to OpenSSL: Command-line Tool

www.bsdmag.org 9

short key the algorithm is considered insecure nowadays
and several replacement algorithms were proposed. One
of them is AES. Its block size is 128 bits and the key length
can be 128, 192 or 256. Similarly to DES it can work in
CBC or ECB mode and the options of the command enc
that produce AES are aes-128-cbc, aes-128-ecb, aes-192-cbc,
aes-192-ecb, aes-256-cbc, aes-256-ecb, where the numbers in
the names are the length of the keys. Here are examples of
AES in which we print the generated keys to get a notion of
their lengths: see Listing 12-15.

TripleDES is another algorithm that is based on DES.
It applies DES three times to each block thus increasing
its strength. It first encrypts the input with one key, then
decrypts it with another, then encrypts with a third:

C = E(D(E(P, K
1
),K

2
),K

3
)

If the first and the third key are equal, we speak of Two-key
TripleDES, otherwise we speak of Three-key TripleDES.
The options of the enc command that produce TripleDES
are des-ede and des-ede3. The reader can readily con- struct
examples that use this cipher in different modes following
the listings above and the general format of enc.

Message Digests
Message digests take a variable-sized input and
produce fixed-size output, called a hash or a digest. It is
computationally difficult to restore the original message from
the hash or to find a collision – that is another message with
the same hash. These algorithms also follow some statistical

des-ofb for OFB mode and des is an alias for des-cbc. We
encrypt and decrypt with any of these ciphers in a similar
way as with rc4 in Listings 5-8.

Initially we were speaking about symmetric keys but the
above commands contain no keys – only passphrases in
-pass option. OpenSSL can take passphrases from the
command line as shown, from a file, from an environment
variable, from a file descriptor or from stdin. Once it has a
passphrase it can derive a stronger key from it by salting
and stretching techniques (we will explain them in the
next section). The option -salt enables salting and it
should always be used unless compatibility with previous
versions of OpenSSL is required; in that case -nosalt
disables salting. We can see the generated salt and key
by providing the option -p, see Listing 9-10.

The command enc has a unified interface to all ciphers
and modes, but Listings 9 and 10 show a difference in the
internal workings of ECB and CBC modes – the usage of
an initialization vector for the latter one. As we mentioned
the IV is XORed with the first block.

It is possible to generate the key and encrypt or decrypt
separately. The option -P prints the key and the IV without
encrypting or decryption and they can be used later.
Listing 11 contains an example using DES CBC.

The first command prints the generated key, salt and IV.
We extract them from its output and we pass them to the
next commands using the options -K for the key and -iv for
the initialization vector. Thus if we have a key and a IV we
don’t need to provide a passphrase. The block size and the
key length of the DES algorithm are 64 bits. Because of the

Listing 8. DES CBC Decryption

#!/bin/sh openssl enc -des-ecb -d -in message.descbc -pass \

pass:testpass

Listing 9. Encrypt and Print Key and Salt with DES ECB

$ openssl enc -p -des-ecb -salt -in message.txt -out \

message.descbc -pass pass:testpass

salt=903B88D249DEC0B4

key=83277DDED6E54786

Listing 10. Encrypt and Print Key Salt and IV with DES CBC

$ openssl enc -p -des-cbc -salt -in message.txt -out \

message.descbc -pass pass:testpass

salt=633978D05BFD58BF

key=50266891D5AB8100 iv

=030447613BBE6A9F

Listing 11. Generate Key and IV

#!/bin/sh

echo "This is a message" > message.txt

s=‘openssl enc -P -des-cbc -salt -passpass:testpass‘

key=‘echo $s | sed -n -e "s/salt=.* key=\(.*\) iv=.*/\1/p"‘

iv=‘echo $s | sed -n -e "s/salt=.*key=.* iv=\(.*\)/\1/p"‘

openssl enc -des-cbc -K $key -iv $iv -in message.txt -out \

message.desebc

openssl enc -des-cbc -K $key -iv $iv -in message.desebc -d

Listing 12. Encrypt with AES with 128-bit Key in CBC

$ echo "This is a message" > message.txt

$ openssl enc -p -aes-128-cbc -in message.txt -out \

message.aes128cbc -pass pass:testpass

salt=6A2CB7D200C545E7 key=39F2F2FE

E1F6B114FF0015B0A89CDF6C

iv =BAE04A6528DBE50C68BC6892F507B2A1

06/2011 8

GET STARTED Introduction to OpenSSL: Command-line Tool

www.bsdmag.org 9

requirements as a one-bit change in the input should change
on average at least half of the bits of the output.

OpenSSL supports several digest algorithms. The
pseudocommand list-message-digest-commands on Listing
16 prints the supported digest commands.

Message digests can be used as checksums. People
often distribute files over the Internet along with their digests.
When one downloads a file and its digest, she computes the
digest once again and compares it with the original digest.
If they do not coincide, the file must have been corrupted
during the download. This scenario works only when the
errors are caused by unintentional noise in the channel. It
does not work when an attacker is actively modifying the file
and possibly its digest during the download.

We will develop simple scripts that will generate and
verify files’digests. The script that calculates the hashes
is fairly simple. It calls openssl dgst with the supplied
algorithm and forwards its ouput to a file, see Listing 17.

The verification script has to parse the file with the
digests. Each line of this file has the following format:

ALG(filename) = digest

We will extract the algorithm, the file name and the digest
from each line and then re-calculate it and compare it,
see Listing 18.

We use sed to replace the different field delimiters with
spaces and cut to extract the fields. When we have the
filename we calculate its digest and we compare it with
the one in the checksums file.

Cryptographic hashes are also used for password storage.
We keep the passwords’digests instead of the plaintext.
When users log in we hash the password they input and
compare it with the digest in the storage. If they match, the
user has given the correct password. If an attacker steals the
passwords database it will be difficult for her to restore the

Listing 13. Decrypt with AES with 128-bit Key in CBC

$ openssl enc -aes-128-cbc -in message.aes128cbc -pass \

pass:testpass -d

This is a message

Listing 14. Encrypt with AES with 192-bit Key in CBC

$ echo "This is a message" > message.txt

$ openssl enc -p -aes-192-cbc -in message.txt -out \

message.aes192cbc -pass pass:testpass salt=29554552A5C915E6

key=60D6DF60C2A9F698900CEA0EE8B6FCFB12F18C39AF98AC6D

iv =3BCDDDF88523C9B0A3E060A8070BA133

Listing 15. Decrypt with AES with 192-bit Key in CBC

$ openssl enc -aes-192-cbc -in message.aes192cbc -pass \

pass:testpass -d

This is a message

Listing 16. List Supported Message Digests

$ openssl list-message-digest-commands

md4 md5 mdc2 rmd160 sha sha1

Listing 17. Digests Calculation on Files

#!/bin/sh

alg=’md5’checksums_file=’checksums’

while getopts a:c: o

do

case "$o" in

a) alg="$OPTARG";;

c) checksums_file="$OPTARG";; *) exit 2;;

esac

done

shift

$(($OPTIND - 1))

if [$# -eq 0]

then

echo "Provide at least one file to digest" >&2

exit

1 fi

openssl dgst -$alg $* > $checksums_file

Listing 18. Digests Veri�cation of File

while read l

do

pl=‘echo $l | sed -e ’s/\(.*\)(\(.*\)) *= * \(.*\)/\1 \2 \3/’

a=‘echo $pl | cut -f 1 -d " " | tr "[:upper:]" "[:

lower:]"

‘f=‘echo $pl | cut -f 2 -d " "

‘d=‘echo $pl | cut -f 3 -d " "‘

cmd="openssl dgst -$a $f"

nl=‘exec $cmd‘pnl=‘echo $nl | sed -e ’s/\(.*\)(\(.*\))

*= * \(.*\)/\1 \2 \3/’u8216

 nd=‘echo $pnl | cut -f 3 -d " "

‘if ["$d" = "$nd"]

then

echo "Digests for $f match" else

echo”Digests for $f do not match” >&2

fi

done < $digest_file

06/2011 10

GET STARTED Introduction to OpenSSL: Command-line Tool

www.bsdmag.org 11

passwords from their digests. However, some information
can leak in this scenario. If two users are using one and the
same password, their hashes will be the same. The attacker
can also attempt to brute force the passwords, so to slow
her down we can use salting. A salt is just a random string
that is not secret. We append the salt to the password thus
stretching it and we hash the whole string. When we have
to verify a user’s password we take the salt, combine it with
the password and generate the hash of the combination
and compare it with the hash in the database. The salting
eliminates the problem of two users with one and the same
password – the salts are different and thus the hashes of
the salt-password combinations are different. It also slows
down the attacker when brute-forcing passwords. The
implementations of salting can differ from this simplistic
explanation – they may combine the password and the salt
in a different way and they can repeat the process several
times.

OpenSSL has a passwd command that can generate
password hashes with salts. We will demonstrate it by
generating a hash as it would appear in BSDs’passwd files.
We have a test user called testuser with password testpass
in /etc/master.passwd and its hash is shown on Listing 19.

The contents between the first and the second $ signs
means that the hash is generated using MD5, the one
between the second and third is the salt and the one after
the third is the digest. Let’s feed the salt and the original
password to openssl passwd command. The two hashes in
Listing 19 and 20 coincide.

Asymmetric Ciphers
One of the problems with the symmetric ciphers is
the growing number of keys – if n people desire to
communicate securely with each other the total number
of user keys generates needed a is n(n-1)/2. Asymmetric
keys – cryptography one public and one solves that
problem. Each private. The private is kept secret, the
public can be distributed freely. The two keys are related
via some mathematical properties but it is computationally
difficult to find the private one from the public.

Let’s say that Bob has generated his pair and PR
Bob
 is

his public key and PU
Bob
 is his public one. Charlie wants to

send him a message and he obtains Bob’s public key and
encrypts the message with it C = E(M,PU

Bob
). Bob receives

the cipher text C and descrypts with his private key M =
D(C, P R

Bob
). The mathematical properties between the two

keys ensure that the holder of the private key can decrypt
the message, and if the key is kept secret and not stolen
that would be Bob and Bob only.

Here is an illustration of this scheme using the RSA
public key algorithm. Bob generates his private key using
genrsa commands, see Listing 21.

The out option specfies where the private key will be
stored; if omitted the key will be written on stdout. The
passout option provides the source of the passphrase
that will be used to derive a secret key to symmetrically
encrypt the private key; if omitted it will not be encypted.
As we said, it is important to protect the private key –
encrypting it will at least slow down the attackers if they
obtain it somehow. The option des3 means the key will be
encrypted with Triple DES. The final number argument,
2048, is the length of the key modules in bits; generally,
the longer the modulus, the better. Its values can be 512,
1024, 2048 or 4096 and at least 1024 is recommended.

Listing 19. Testuser Password MD5 Digest

$ sudo cat /etc/master.passwd | grep testuser | cut -d ":" \ -f 2

1NjLOxTjY$b9cDDbFUnidKfdOp/V.CH/

Listing 20. Password Hashing

$ openssl passwd -1 -salt NjLOxTjY testpass

1NjLOxTjY$b9cDDbFUnidKfdOp/V.CH/

Listing 21. Bob Generates Private Key

$ openssl genrsa -out bob_privkey.pem -passout pass:testpass\

-des3 2048

Listing 22. Bob Generates Public Key

$ openssl rsa -in bob_privkey.pem -passin pass:testpass \

-pubout -out bob_pubkey.pem

Listing 23. Charlie Encrypts Message with Bob’s Public Key

#!/bin/sh echo "Message from Charlie to Bob" > \

message-from-charlie.txt

openssl rsautl -encrypt -pubin -inkey bob_pubkey.pem -in \

message-from-charlie.txt -out message-from-charlie.bin

Listing 24. Bob Decrypts Message with his Private Key

#!/bin/sh

openssl rsautl -decrypt -inkey bob_privkey.pem -passin

\ pass:testpass -in message-from-

charlie.bin -out \ message-from-

charlie-dec.txt

cat message-from-charlie-dec.txt

06/2011 10

GET STARTED Introduction to OpenSSL: Command-line Tool

www.bsdmag.org 11

Next Bob generates the public key for the public key for
the private in Listing 22. The option pubout means that the
output will be the public key; if it is not provided the private
key will outputted. The option out, again, specifies where
the public key will be stored. Bob now has his public key
and he gives it to Charlie.

Once Charlie has Bob’s public key he encrypts his
message with rsautl command, see Listing 23.

When Bob receives the message, he decrypts it with his
private key: see Listing 24.

If Bob wishes to send a secure response to Charlie he
can encrypt it in the same way with Charlie’s public key.

A private key can be used as an identification or as an
authentication. Let’s consider that Bob wants to prove that
a document comes from him and not from someone else.
In this case he can sign the document with his private key.
Then everyone else can verify the signature with Bob’s
public key, see Listing 25.

When Charlie receives the message he can verify that it
comes from Bob, see Listing 26.

We should note that the asymmetric operations are
computationally intensive. For performance reasons in

Listing 25. Bob Signs Message with his Private Key

#!/bin/sh echo "Signed message from Bob to Chrarlie" > \

message-from-bob.txt openssl rsautl -sign -inkey

bob_privkey.pem -in \

message-from-bob.txt -out message-from-bob.bin

Listing 26. Charlie Veri�es Message with Bob’s Public Key

#!/bin/sh openssl rsautl -verify -pubin -inkey bob_

pubkey.pem -in \

message-from-bob.bin -out message-from-bob-verified.txt

if ["$?" -eq "0"]

then

echo "Verification successful"

cat message-from-bob-verified.txt else

echo "Verification failed"

fi

Listing 27. Bob Signs the Hash of the Message

#!/bin/sh

echo "Signed message from Bob to Chrarlie" > \

message-from-bob.txt openssl dgst -sha1 -sign bob_

privkey.pem -passin \

pass:testpass -out message-from-bob.sha1 \ message-

from-bob.txt

the case of signing the hash of the data is signed, rather
than the original data itself. The above examples are only
illustrative and rsautl should not be used for signing a large
amount of input. We can use the command dgst to sign the
hashes and to verify the signature, see Listing 27.

The command generates the SHA1 digest as specified
by -sha1 option – any digest command names can be used
instead of it. Then it signs the hash using the private key from
-sign option and outputs in the file given in -out option. The
final argument is the file whose signature is created. Bob can
then send the signature and the message to Charlie.

Charlie verifies the signature with the dgst command as
well, see Listing 28. The option -verify holds the public
key that will be used to verify the signature. The -signature
option contains the file with the signed hash and the last
argument is the message. If the verification succeeds the
message is shown.

The RSA algorithm is convenient because it supports
both signing and encryption. The DSA algorithm, on the
other hand provides only signing and Diffie-Hellman –

Listing 28. Charlie Veri?es the Hash of the Message

#!/bin/sh

openssl dgst -sha1 -verify bob_pubkey.pem -signature \

message-from-bob.sha1 message-from-bob.txt

if ["$?" -eq "0"]

then

cat message-from-bob.txt

fi

Listing 29. Bob Generates DSAP arameters and Keys

#!/bin/sh

openssl dsaparam -out bob_dsaparam.pem 1024

openssl gendsa -out bob_dsaprivkey.pem bob_dsaparam.pem

openssl dsa-in bob _dsaprivkey.pem -out bob_

dsaprivkey.pem \

-des3 -passout pass:testpass

openssl dsa -in bob_dsaprivkey.pem -pubout -out \

bob_dsapubkey.pem -passin pass:testpass

Listing 30. Bob Signs the Message with DSA Private Key

#!/bin/sh

echo "Signed message from Bob to Charlie"> \

message-from-bob.txt

openssl dgst -dss1 -sign bob_dsaprivkey.pem -passin \

pass:testpass -out message-from-bob.sha1 \

message-from-bob.txt

06/2011 12

GET STARTED

only key agreement. These two algorithms require some
parameters to be generated before their usage and that
makes them more complex than RSA. However, they are
popular as well and they were not patented while RSA
was until 2000. Here is an example of DSA usage. Bob
generates his DSA parameters and keys in Listing 29.

Bob first generates the DSA parameters with dsaparam and
stores them in the file given in -out option and the length of
their prime and generator is 1024. Next, he creates a DSA
private key out of the parameters with gendsa commmand.
That command can encrypt the private key, but it only
accepts the passphrase interactively and it makes it
difficult to automate the creating of encrypted DSA private
keys. The next command, dsa, somehow alleviates this
issue – it takes the unecrypted key and encrypts and its
-passout option accepts the passphrase in the usual for
OpenSSL way. The name of the symmetric cipher it uses
is given as another option, in our case -des3. Finally, Bob
generates the public key from the private key.

Once we have the DSA private key we can sign a
message with the command dgst in the same as we did
with the RSA private key, see Listing 30.

We verify the signature in the same way as we did with
the RSA public key, see Listing 31.

The -dss1 option means SHA1 but in this case OpenSSL
behaves oddly and insists on naming the digest algorithm
in this way.

We will round our treatment with mentioning the Diffie-
Hellman algorithm used for key agreement. We said that
the public key algorithms are computationally intensive.
The performance of the symmetric ones is better but they
require the two parties to have a shared secret key. Key
agreement means that the parties can securely exchange
that secret key over an insecure channel. After they do it

they can symmetrically encrypt, send and symmetrically
decrypt their messages with the shared key thus securing
their communication. The Diffie-Hellman algorithms
requires pregenerated parameters similar to DSA. We can
generate them with dhparam command, see Listing 32.

It generates a new set of DH parameters with a 1024-bit
long prime and 2 as a generator and stores them in the
file given in out option. 5 can be used instead of 2 as a
generator.

Pseudorandom Numbers
Pseudorandom numbers are widely used in cryptography.
As we said the salts are random strings. One way to
generate a large prime number is to randomly generate
large numbers and test them for primality. The command
rand can generate random bytes:

$ openssl rand -hex 4

2aa5dc61

$ openssl rand -hex 4

6f7c3504

$ openssl rand -base64 4

kMuVow==

$ openssl rand -base64 8

/C3fMqBavOs=

The number argument specifies the number of bytes that
will be generated, and the -hex and -base64 means that
they will be encoded with hex or base64 formats. If these
options are omitted the bytes will be in binary.

Final Words
We provided a lot of command line examples, but we skipped
some topics as well – for example, s_client and s_server
commands that implement a generic SSL client and a SSL
server. OpenSSL also supports some hardware accelerators
and if such is installed it can be used with the -engine option.
The command speed allows us to compare the performance
of the different algorithms in general and the performance of
the aforementioned hardware accelarators in particular.

If the reader is tempted to learn more, the book Network
Security with OpenSSL by O’Reilly is a good resource
about OpenSSL, although it mainly discusses the API.
The official documentation is provided in the man pages
as usual and on the web site.

Listing 31. Charlie Verifies the Message with Bob’s DSA Public Key

#!/bin/sh

openssl dgst -dss1 -verify bob_dsapubkey.pem -

signature \

message-from-bob.sha1 message-from-bob.txt

if ["$?" -eq "0"]

then

cat message-from-bob.txt

fi

Listing 32. Generating DH Params

#!/bin/sh

openssl dhparam -out dhparam.pem -2 1024

IVAN ”RAMBIUS”IVANOV
Ivan „Rambius” Ivanov is a Bulgarian software developer
currently based in New York and a member of NYC BSD User
Group.

BSDCan 2011

www.bsdmag.org 13

BSDCan 2011 is over, once again I’m impressed by the turnout and by the conference
itself. I get the opportunity to visit many conferences, tradeshows, and other types of
events every year, and while I feel that many of them are of marginal value BSDCan

is a conference that I always look forward to attending, and always come away from it
having gained something of value.

BSDCan is a well organized conference that appeals to developers and administrators
of BSD UNIX systems. The conference opened this year with a talk on the history on UNIX by Peter
Salus, who has served as the Executive Director of USENIX, the VP of the Free Software Foundation,
and has authored books such as A Quarter Century of UNIX. While many of the presentations at BSDCan
are given by strongly technical individuals, several of them are given by people with very polished
presentations and public speaking skills, and the keynote address given by Peter definitely fell in the
latter category. Other noteable presentations over the two day span of the conference included FreeBSD
going IPv6 Only by Bjoern Zeeb, BhyVE: A native BSD Hypervisor by Neel Natu, and Sendmail: History
and Design by Eric Allman. Many of the presentations were very interesting, and unfortunately due to
the length of the conference and the number of presentations there were several times when painful
decisions had to be made as to which presentation to attend.

The conference proper was proceeded by two days of tutorials, as well as a FreeBSD developers
summit. The DevSummit included the yearly bikeshed discussions on topics like which SCM system
should the project use, as well as some more productive discussions, such as what features to include
in the upcoming FreeBSD 9.0-RELEASE. A new approach was tried this year with a Vendor Summit, in
which vendors could talk directly with core developers about issues that are pertinent in their worlds. It
was refreshing to see that a significant chunk of this time was spent discussing strategies for integrating
code from the vendors into FreeBSD.

The BSDA certification exam was given this year during the conference. I was told there was a single
individual who took the exam, despite my threats of physical violence with several of the attendees.
Clearly I’ll need to work on making sure I’m taken more seriously in the future.

All in all, a fantastic time was had by all. A time to learn, a time to trade knowledge and experience, a
time to catch up with people over pints at The Royal Oak.

BSDCan 2011

By Josh Paetzel

06/2011 14

GET STARTED Introducing FreeNASTM 8.0

www.bsdmag.org 15

FreeNAS is an embedded open source network
attached storage (NAS) system based on
FreeBSD. FreeNAS was first released by Olivier

Cochard-Labbé in 2005 and was originally derived from
m0n0wall (http://www.monowall.org/), an embedded
firewall based on FreeBSD and released under the
BSD license. Due to its ease of use and rich feature set,
FreeNAS quickly became a popular open source storage
solution and attracted a large and varied userbase.

As features continued to be added over time, the
monolithic design of FreeNAS became problematic.
There are many different uses for a storage system and
by not having a modular design that allowed the user
to install just the features they needed, FreeNAS was
suffering from feature bloat. It was becoming obvious that
a complete redesign was needed in order for FreeNAS to
remain a viable NAS solution.

In December, 2009 Olivier announced that FreeNAS
0.7 would be placed in maintenance-only mode as he
no longer had the time to devote to further FreeNAS
development. Volker Theile, a FreeNAS developer who
develops on Debian in his day job, announced that he
would fork FreeNAS and his redesign would be based on
Debian Linux and released under the terms of the GPLv3
license. The resulting project became OpenMediaVault
(http://blog.openmediavault.org/). Many FreeNAS users
were not pleased about the change of license and the loss
of kernel-based ZFS support due to GPL incompatibilities
with the CDDL license.

iXsystems (http://www.ixsystems.com), a provider of
FreeBSD-based hardware solutions and professional
support, took the initiative to redesign a version of
FreeNAS that remained FreeBSD based and BSD
licensed. FreeNAS would be rewritten from scratch using

a modular design that would support plugins. This would
allow FreeNAS to have a small footprint that was easy
to support. It would also allow developers to create and
contribute plugins for niche features, allowing FreeNAS’s
usage cases to grow with users’ needs. Work on the new
design began in 2010 and FreeNAS 8.0 was released on
May 2, 2011.

Differences Between FreeNAS 0.7 and FreeNAS 8.0
Besides the redesign from a monolithic to a modular
system, there are many differences between the FreeNAS
0.7 maintenance version and the new FreeNAS 8.0. The
most significant changes are as follows:

• FreeNAS is now based on NanoBSD (http://
www.freebsd.org/doc/en_US.ISO8859-1/articles/
nanobsd/article.html), an embedded version of
FreeBSD. This means that the operating itself has a
small footprint and is easily modifiable through the use
of scripts.

• The operating system is now separate from the storage
volumes. This means that FreeNAS should be installed
on a flash card or USB thumb drive rather than a
hard disk as the operating system will take over all of
the space on the installation device, regardless of its
size. This separation offers an advantage: when you
upgrade, a copy of the previous operating system and
configuration database is saved, allowing you to easily
revert back to a previous release or configuration
should there be a problem with the upgrade.

• The minimum disk requirement has increased from
128 MB to 1 GB. This is to provide sufficient room
to hold a copy of the previous operating system and
configuration.

Introducing
FreeNASTM 8.0
On May 2, 2011 the much anticipated redesign of FreeNAS
was released. This article introduces FreeNAS 8.0, describing
the reasons for its redesign, the current and upcoming
features, the graphical administrative interface, and where
you can find additional information.

http://www.monowall.org/
http://blog.openmediavault.org/
http://www.ixsystems.com
http://www.freebsd.org/doc/en_US.ISO8859-1/articles/nanobsd/article.html
http://www.freebsd.org/doc/en_US.ISO8859-1/articles/nanobsd/article.html
http://www.freebsd.org/doc/en_US.ISO8859-1/articles/nanobsd/article.html

06/2011 14

GET STARTED Introducing FreeNASTM 8.0

www.bsdmag.org 15

FreeNAS 8.0 Graphical Interface
The FreeNAS 8.0 graphical administrative interface, seen
in Figure 2, is designed to make it easy to configure and
monitor a FreeNAS system. This section provides an
overview of the options that are available within the tree
menu.

NOTE
The 8.0 FreeNAS Guide (http://doc.freenas.org) contains
screenshots for every screen in the administrative
tool, tables that summarize every configurable option,
and descriptions for using each component of the
administrative interface.

Account
Account used to change the administrative username and
password. It can also be used to add users and groups to
the FreeNAS system.

System
The Reports tab provides hourly/daily/weekly/monthly/
yearly graphs of CPU and RAM usage, system load, swap
utilization, and running prcoesses.

The Settings tab allows you to select HTTP or HTTPs
access to the FreeNAS administrative interface, set the
localization and time zone, set the NTP server addresses,
configure miscellaneous settings such as the MOTD, set
the email settings for notifications, upload the SSL key,
perform upgrades, and reset the configuration to the initial
defaults.

The System Information tab shows information such
as the FreeNAS version, processor, hostname, and
uptime.

• The goal of the 8.0 release was to design a modular
operating system that contains the core features
needed by a NAS. Future releases will introduce
plugins that provide additional features that are not
required by all FreeNAS users. This means that
some features–such as UPnP, iTunes/DAAP, and
BitTorrent–are no longer in the core of the operating
system. Current FreeNAS 0.7 users who require
those features should wait for the next version of
FreeNAS 8 before they consider upgrading.

• Configuration changes are now stored in a
database. This means that you should not make
any configuration changes using FreeBSD
commands; for example, you should not change
the root password using the passwd command
or install FreeBSD packages using the pkg _ add
command. FreeBSD commands may still work, but
their results will not be written to the configuration
database and all such changes will not survive a
reboot. All configuration changes should be made
using either the GUI administrative interface or the
command line console. If you need to add additional
software to your FreeNAS system, you should wait for
8.1 (which will support additional software via plugins)
and remain on 0.7 for now.

• The graphical administrative interface has been
rewritten in Django and is now tree based rather
than drop-down menu based. Figures 1 and 2
provide examples of the graphical interfaces for
each version.

A comparision chart of feature differences is available from
http://freenas.org/comparison/item/freenas-comparison.

Figure 1. FreeNAS 0.7 Graphical Administrative Interface Figure 2. FreeNAS 8.0 Graphical Administrative Interface

http://doc.freenas.org
http://freenas.org/comparison/item/freenas-comparison

06/2011 16

GET STARTED Introducing FreeNASTM 8.0

www.bsdmag.org 17

applicable to each type of share. The shares themselves
are managed by services: AFP for Apple Shares, NFS for
UNIX shares, and CIFS for Windows shares. Additionally,
share authentication can be provided by external servers
running LDAP or Active Directory. This means that after
you create your shares, you should configure and start
the applicable share and authentication service(s) in the
Services section.

Services
The tabs in this section allow you to configure the following
services:

• AFP: The Apple Filing Protocol provides file services
to Mac computers. This service must be configured
and started if you have created Apple shares.

• Active Directory: AD provides sharing resources to
Windows computers. If your Windows computers are
members of an AD domain and you have created
Microsoft shares, you will need to configure and
start this service. Note that you will need to add
a DNS record for the FreeNAS system on the
Windows server. FreeNAS 8.0 supports Windows
2000 or 2003 domains; if your AD server is running
Windows 2008, make sure that its forest level is set
to 2003.

• CIFS: The Common Internet File System offers file
services within a Windows network. FreeNAS uses
Samba to provide CIFS capability without the need for
a Windows server in the network. Unix-like systems
that provide a CIFS client can also connect to CIFS
shares. If you have created Windows shares and do
not have a Windows server running AD, you will need
to configure and start this service.

• Dynamic DNS: DDNS is useful if your FreeNAS
system is connected to an ISP that periodically
changes the IP address of the system. With dynamic
DNS, the system can automatically associate its
current IP address with a domain name, allowing you
to access the FreeNAS system even if the IP address
changes. DDNS requires you to register with a DDNS
service such as DynDNS.

• FTP: The File Transfer Protocol can be used by
clients to browse and download data using their web
browser or FTP client software. FTP is considered to
be an insecure protocol and should not be used to
transfer sensitive files.

• LDAP: The Lightweight Directory Access Protocol
provides directory services for finding resources,
such as users and their associated permissions, in
a network. If your network contains an LDAP server,

Network
This section is used to view and configure network
settings. It allows you to add interfaces, configure them
for both IPv4 and IPv6 and to add interface options such
as the MTU. The Link Aggregations tab allows you to
configure lagg(4) devices which are used to provide link
aggregation and link failover using the failover, FEC (Cisco
EtherChannel), LACP (IEEE 802.3ad), loadbalance, or
roundrobin protocols. The Static Routes tab allows you to
view and configure static routes. The VLAN tab allows you
to assign a parent interface and VLAN tag ID to a virtual
vlan(4) interface.

Storage
The Periodic Snapshot Tasks allows you to schedule the
creation of ZFS dataset snapshots, where a ZFS dataset
is a section of a volume (e.g. a directory) that can be
shared. A snapshot is a copy of a dataset at a specific
period in time and can be used to restore or rollback to
a saved dataset. The Replication Tasks tab can be used
to replicate a ZFS volume to another FreeNAS system
over SSH. The Volumes tab allows you to create UFS or
ZFS volumes, ZFS datasets, and to import existing UFS,
NTFS, or DOS volumes.

Sharing
This section of the administrative interface allows you to
create shares to be accessed by Mac, Unix (e.g. Linux or
BSD), or Windows clients. The tabs in this section allow
you to create and view Apple, UNIX, and Windows shares,
as well as configure permissions and common settings

Figure 3. Control Services Screen

06/2011 16

GET STARTED Introducing FreeNASTM 8.0

www.bsdmag.org 17

you should configure and start this service on the
FreeNAS system so that it can connect to the LDAP
server in order to authenticate users before they
access a share.

• NFS: The Network File System is a protocol for
sharing files on a network. If you have created any
UNIX shares, you will need to configure and enable
this service.

• SNMP: The Simple Network Management Protocol
is used to monitor network-attached devices for
conditions that warrant administrative attention. Use
this tab if you would like to configure bsnmpd(8) on
your FreeNAS system.

• SSH: Secure Shell allows for files to be transferred
securely over an encrypted network. If you configure
your FreeNAS system as an SSH server, the
computers in your network will need to run SSH client
software in order to transfer files using SSH.

• TFTP: The Trivial File Transfer Protocol is a light-
weight version of FTP usually used to transfer
configuration or boot files between machines, such
as routers, in a local network. An example where
this service is useful is when you wish to store all of
the images and configuration files for your network’s
devices on the FreeNAS system.

• ISCSI: This service allow FreeNAS to act like
a storage area network (SAN) over an existing
Ethernet network by exporting disks that iSCSI
clients can attach to and mount. iSCSI provides an
advantage in an environment that uses Windows
shell programs; these programs tend to filter by
Network Location but iSCSI mounts are not filtered.
In order to setup iSCSI, you will need to use this tab
to configure authorized users, authorized clients
(initiators), device or file extents, iSCSI targets, and
to map targets to extents.

• Control Services: This tab, shown in Figure 3,
displays the running status of each service. By
default, every service is disabled; this means that
you have to remember to enable a service after you
configure it. To do so, simply click the red OFF button
next to the service and wait a few seconds until it
changes to a blue ON. Should you wish to disable a
running service, click its ON button and wait a few
seconds for it to return to OFF. The wrench icon next
to a service can be used to enter its configuration
screen.

Display System Processes
This tab will open up a read-only terminal where you can
view the output of the top command.

Reboot/Shutdown/Log Out
Reboot/Shutdown/Log Out: menu items are provided for
each of these functions.

Help
Click this icon to see a listing of the FreeNAS help resources.
These are described in more detail in the next section.

Finding Additional Information
Several community resources are available to assist you
should you have a question regarding FreeNAS 8.0:

Website
The FreeNAS website is located at http://www.freenas.org.
It contains news and announcements, information
about FreeNAS, links to FreeNAS social media sites,
documentation, and support resources.

Blog
The official FreeNAS blog is located at http://
blog.freenas.org/. Subscribe to its feed to keep up-to-date
with what is happening with FreeNAS.

Documentation
The FreeNAS Guide (http://doc.freenas.org) is the first place
to look if you need to know how to configure your FreeNAS
system. As new features are added to FreeNAS, they are
documented in the Guide. Over time, the Guide will mature
into the definitive FreeNAS resource. The Guide is written
using a wiki and contributions that address knowledge gaps
are welcome. Simply create a wiki login and submit your
content; it will be reviewed by editors for technical accuracy
and readability.

Mailing Lists
Several FreeNAS mailing lists are available which allow
users and developers to ask and answer questions
related to the topic of the mailing list. To post an email to
a list, you will need to subscribe to it first. Each mailing
list is archived, allowing you to browse for information by
date, thread name, or author. The following mailing lists
are available:

• announce: This is a low-volume, read-only list
where major milestones, such as new releases, are
announced. You can subscribe to the list and access
the archives from https://lists.sourceforge.net/lists/
listinfo/freenas-announce.

• commit: This is a read-only list. As code changes
in the FreeNAS repository, the commit message
is automatically sent to this list. You can subscribe

http://www.freenas.org
http://blog.freenas.org/
http://blog.freenas.org/
http://doc.freenas.org
https://lists.sourceforge.net/lists/listinfo/freenas-announce
https://lists.sourceforge.net/lists/listinfo/freenas-announce

06/2011 18

GET STARTED

to the list and access the archives from https://
lists.sourceforge.net/lists/listinfo/freenas-commit.

• devel: FreeNAS developers are subscribed to this
list. Technical questions about the current FreeNAS
release can be posted here. You can subscribe
to the list and access the archives from https://
lists.sourceforge.net/lists/listinfo/freenas-devel.

• docs: This list is for discussion regarding FreeNAS
documentation. You can subscribe to the list and
access the archives from https://lists.sourceforge.net/
lists/listinfo/freenas-docs.

• testing: FreeNAS developers are subscribed to
this list. Technical questions about the upcoming
FreeNAS release and feedback on testing snapshots
can be posted here. You can subscribe to the list and
access the archives from https://lists.sourceforge.net/
lists/listinfo/freenas-testing.

• translations: This list is for discussion regarding
FreeNAS localization and translating FreeNAS
documentation. You can subscribe to the list and
access the archives from https://lists.sourceforge.net/
lists/listinfo/freenas-translations.

IRC
There is a #freenas channel on IRC Freenode if you would
like to try asking a question in real time. Depending upon
your time zone and who happens to be watching the
channel messages at the time, you may or may not get
an answer right away. Be patient and check back every
now and then as no one can answer your question if you
disappear from the channel.

Forum
The FreeNAS 8 Forums (http://forums.freenas.org) contain
information, tips and solutions which can be accessed from
a web browser. If you are having problems with something
on your FreeNAS system, try using the forum’s search
utility. You’ll often find that someone else has posted a
similar question and that other users have responded with
a fix or a how-to. The information in the Forums has been
categorized, allowing you to browse through posts on a
specific topic. Registered users can also ask and answer
questions on the Forums.

Bug Tracker
FreeNAS uses a trac database where you can view existing
support tickets to see if your issue has already been
reported or create new tickets for unreported issues (http://
support.freenas.org/). You do not need to create a login
account in order to view existing tickets, but you will need to
use the Register link if you wish to submit a bug report.

Roadmap
The FreeNAS 8.1 Roadmap (http://doc.freenas.org/
index.php/Roadmap_for_8.1) contains the list of features
that are being worked on for the next FreeNAS release.
It is a good resource to check if your favourite feature
isn’t currently implemented. Some of the features on the
Roadmap include:

• migration utility from .7 to 8.x
• rsync over SSH
• SMART monitoring
• more detailed system information
• UPS management
• error reporting and user feedback
• encryption
• network bandwidth reporting
• web server
• 3rd party plugin system
• Unison configuration
• mount management through the graphical interface
• BitTorrent through plugin system
• UPnP/DAAP/DLNA through plugin system

Conclusion
FreeNAS 8.0 represents a significant milestone in the
evolution of open source storage solutions. Future
releases will be able to leverage its modular design
through the use of plugins, making it a NAS suited for any
type of storage need.

DRU LAVIGNE
Dru Lavigne is author of BSD Hacks, The Best of FreeBSD
Basics, and The De�nitive Guide to PC-BSD. As Director of
Community Development for the PC-BSD Project, she leads the
documentation team, assists new users, helps to �nd and �x
bugs, and reaches out to the community to discover their needs.
She is the former Managing Editor of the Open Source Business
Resource, a free monthly publication covering open source and
the commercialization of open source assets. She is founder and
current Chair of the BSD Certi�cation Group Inc., a non-pro�t
organization with a mission to create the standard for certifying
BSD system administrators, and serves on the Board of the
FreeBSD Foundation.

https://lists.sourceforge.net/lists/listinfo/freenas-commit
https://lists.sourceforge.net/lists/listinfo/freenas-commit
https://lists.sourceforge.net/lists/listinfo/freenas-devel
https://lists.sourceforge.net/lists/listinfo/freenas-devel
https://lists.sourceforge.net/lists/listinfo/freenas-docs
https://lists.sourceforge.net/lists/listinfo/freenas-docs
https://lists.sourceforge.net/lists/listinfo/freenas-testing
https://lists.sourceforge.net/lists/listinfo/freenas-testing
https://lists.sourceforge.net/lists/listinfo/freenas-translations
https://lists.sourceforge.net/lists/listinfo/freenas-translations
http://forums.freenas.org
http://support.freenas.org/
http://support.freenas.org/
http://doc.freenas.org/index.php/Roadmap_for_8.1
http://doc.freenas.org/index.php/Roadmap_for_8.1

http://bsdmag.org

06/2011 20

DEVELOPERS CORNER A Puffy In The Corporate Aquarium

www.bsdmag.org 21

It will also cover how numerous installations of servers
and desktops can be deployed and maintained using
puppet [3] from a central location.

Background
For several years at M:tier [4] we have setup complete IT
infrastructures running exclusively on OpenBSD, from the
entry site firewall to the secretary’s workstation.

Our clients are Fortune 500 companies (each operating
in totally different and unrelated sectors) which means
that:

• We are not setting up systems for small geek-friendly-
only companies but for huge ones with a long IT
history (some of them are present in more than one
hundred countries worldwide)

• we have to comply with very large and complex
technical and legal specifications (which is always a
challenge when using a non-mainstream operating
system)

When it makes sense, any local modifications or
enhancements are made so that they can be merged
back into OpenBSD.

Of course some developments are very specific to what
we do and have no place in the OpenBSD project’s CVS
tree.

The Big Picture
We are currently managing over 600 users in several
locations around the globe (and expecting a large increase
in the upcoming months). As mentioned before, all of these
locations are fully running under OpenBSD, that is:

• the firewalls PF (packet filter), IPSEC (VPN), CARP
(for redundancy – with pfsync and sasyncd)...

• the infrastructure servers DNS, DHCP, TFTP, FTP,
HTTP, NFS, LDAP, puppetmaster, Kerberos, Squid
Proxy, CUPS print server...

• the desktops (workstations and laptops) The GNOME
Desktop [5] and plethora of graphical applications.

95% of the services are redundant (including our puppet
distribution setup). Shutting down one server has zero
impact production services. Most of the time, we do not
use the master-slave feature for a particular service (such
as DNS) but rather a multi-master mode where puppet is
responsible for distributing the shared files and CARP (the
Common Address Redundancy Protocol) handles the fail-
over at the network layer (e.g. both local DNS servers are
masters; when the first one goes down or is unreachable,
the second one takes over automatically).

Everything is monitored by Zabbix [6]: there is a Zabbix
proxy running on each site that sends its data over an
IPSEC VPN to an off-site central Zabbix server. Add to that

A Puffy In The Corporate
Aquarium
While OpenBSD [2] is well known for its use in infrastructure
services (MTA, DNS, firewall...) or appliances, this article will
focus on a less known application: the use of OpenBSD as a
Joe User Desktop.

What you will learn…
• Running unattended OpenBSD installations
• Managing an infrastructure with Puppet
• Replacing Windows with a BSD Desktop

What you should know…
• OpenBSD installation process
• Generic IT services
• Concepts behind the Puppet con�guration manager

Success story: OpenBSD as an Enterprise Desktop

06/2011 20

DEVELOPERS CORNER A Puffy In The Corporate Aquarium

www.bsdmag.org 21

good thing is that several applications that they will use on
OpenBSD are available on Windows as well (e.g. Libre/
OpenOffice, The Gimp...) so users can get acquainted to
these tools in advance and proactively check for issues.

On the technical aspect, our typical Joe User Desktop is
made of the following parts:

• a pre-configured GNOME 2.32 environment for the
user interface

• Libre/OpenOffice suite for enterprise editing
• OpenNX [7] for accessing Windows Remote Desktop

or Terminal services (most companies use internally
developed applications running on Windows only)

• CUPS and SANE for printing and scanning (non-
networked scanners can be accessed over the
network using the saned(8) daemon from the sane-
backends package

• the rest of the graphical applications needed for
daily office work (web browser, ftp client, multimedia
player, picture editor...)

The Desktop configuration in itself is done using a script
containing gconftool-2 commands (this script itself is
being run by the puppet daemon). This is where the
registry-like system that gconf uses can come in handy.

Everything that we provide is available in OpenBSD,
except for handful of scripts to ease daily usage of the
Desktop. After several years of using Windows, people
are used to a certain behavior from their computer and
we try to bring that to them (e.g. plugging a USB key
will automatically mount it on the Desktop thanks to a
hotplug(8) script and open a nautilus window with a
right-click menu to unmount the device). We also wrote
some graphical interfaces for commonly used tasks like
encrypting a USB drive, restarting the network, setting
up a PPP/PPPoE/WiFi connection, connecting to the
office IPSEC VPN, changing the local and Kerberos
passwords... most of them using simple scripting and
zenity (a GNOME port of the dialog command).

Lastly, all users’ home directories on the laptops are
encrypted using standard OpenBSD tools. Note that it
is the user’s HOME that is encrypted, and not the entire
/home partition which allows us to use a different pass-
phrase for each user.

Everything a user needs is just a click away; he/she is
by no means required to ever use the terminal.

Joe User meets tiny OpenBSD
In some situations, a full-blown Desktop is not required.
For this particular case, we have developed an OpenBSD-
based thin client solution. The thin client is a small

our Zabbix mobile client that runs on the iPhone, Android,
Blackberry and Windows Mobile 6 and all site managers can
see the status of their OpenBSD machines from anywhere.

Another aspect of our setup is that we use exclusively
signed packages. This has nothing to do with security but
as a solution provider we want to make sure the packages
installed on the machines are all coming from us. This
feature is available in any standard OpenBSD installation
and an HOWTO is available in the OpenBSD FAQ: http://
www.openbsd.org/faq/faq15.html#PkgSig.

Joe User meets OpenBSD
As a regular user, when the IT staff starts migrating
your Windows XP workstation to Windows 7, it is very
traumatic! But, you accept it because everyone else in
the world is more or less doing the same. But imagine if
you had to migrate from Windows XP to Mac OS X! Ok
you can also accept it because, well you own an iPod like
everyone else, so Apple is known to you.

But the real challenge comes when migrating users from
a ten-plus year habit of using Windows and MS Office to
an OpenBSD GNOME Desktop with Libre/Openoffice –
all without impacting their daily work, aka production, aka
company revenue.

The important aspect of such a migration even before
considering the new system is obviously information and
... information. A user always feels somewhat punished
when his computer work environment changes, so it is
very important to explain why it is happening and how in
the end, it will serve and benefit him or her. We have a
tendency to be on the user’s side here; people want to get
work done and not learn how computers work.

I believe large Linux migrations face the same issue
although people have heard of the operating system,
which is not the case with OpenBSD. For most people the
critical applications on their desktop are often MS Office
and a couple of other editing tools (like Photoshop). The

Figure 1. A typical pre-con�gured OpenBSD/GNOME Desktop

http://www.openbsd.org/faq/faq15.html#PkgSig
http://www.openbsd.org/faq/faq15.html#PkgSig

06/2011 22

DEVELOPERS CORNER

www.bsdmag.org

pxeboot server and puppetmaster that holds all the
necessary pieces for an unattended installation.

At all sites, we have a synchronisation job that pulls all
the latest packages from our central repository. We are
using a fully redundant puppetmaster setup, both servers
sharing the same virtual IP over CARP.

Installing a machine becomes a matter of PXE booting
on a modified bsd.rd kernel. This bsd.rd automatically
partitions the hard drive and installs the required sets
from the local FTP store according to configuration files
held on the pxeboot server. The OpenBSD infrastructure
allows easy modification of the bsd.rd installation kernel
to fit anyone’s need.

At the end of the installation, the ruby-puppet package
is installed and puppetd is started. Puppet will then finish
the installation using different manifests and recipes
whether we are installing a laptop, workstation, server,
etc... Puppet takes care of everything from installing the
packages to creating daemon users and configuring the
whole setup. It will also run the necessary commands
required for proper operation of newly installed packages
(squid -z to initialize the proxy cache, aide -i -V0 to create
a reference sum of the installation, update-desktop-
database and gtk-update-icon-cache ... for the desktops
etc).

Once the installation is finished, the machine
automatically reboots and we use rc.firsttime(8) to do
some interactive post-install administrative tasks (like
setting up the root password, registering the machine into
the Kerberos realm, etc...).

Due to the high connection rate to puppet (especially
during the installation phase where dozen of machines
are installed concurrently) we had to start using nginx
with mongrel as a front-end for puppet (i.e puppetmasterd
–servertype=mongrel).

Con�guration deployment
For configuration purposes we exclusively use puppet.
Amongst the obvious benefit of having a central location
for configuration files, it also allows us to setup generic
configuration files that will be shared amongst all
customers but that we can still make specific by only
changing some variables. Puppet variables are stored in
LDAP, so it’s easy for the local staff to make modifications
using a graphical LDAP front-end.

The puppet recipes and manifests are actually
contained in a package called mtier-puppet that is
automatically installed on the puppetmaster that
manages the local site. When a configuration change
is requested, we edit the recipe, create a new package
which then gets pulled by the requesting site and the

OpenBSD installation with only the base and x* sets that
runs under a read-only / partition. Filesystems needed for
normal operation are mounted as mfs in read-write mode
(these are /tmp, /home, /var/log and /var/db). When the boot
process is done, X.org and the thin client software (which is
a fullscreen gtk+2 based interface) get started directly from
/etc/ttys. You can then browse the Internet or connect to a
remote NX server. Depending on the configuration IPSEC
may be used and you are provided with a button to start
the VPN. IPSEC and LAN status are all indicated on the
client itself.

The thinclient uses a central update server running
puppetmaster on the M:tier side. On the client side, the
puppet daemon remounts the root partition in ead-write
mode, does its run then remounts it back to read-only.

Note that besides a modified /etc/rc (stripped down to
speed up boot time and handle the read-only root partition
and mfs filesystems) the thin client is running a generic
OpenBSD installation.

Installation, maintenance and configuration
Here is some more detail on the technical side of
managing all the different locations.

Installation
The installation process for desktops and servers is
the same. At each customer site we have a redundant

Listing 1. Implementation of a dot.plocal overlay directory for
Puppet multi_source_template

sources.each do |file|

 Puppet.debug("Looking for #{file} in

#{environment}")

 if FileTest.exists?("#{file}")

if FileTest.exists?("#{file}.plocal")

 Puppet.info("Found #{file}.plocal in

#{environment}")

 if Digest::MD5.hexdigest(File.read(file)) ==

Digest::MD5.hexdigest(File.read("#

{file}.plocal"))

 Puppet.info("#{file}.plocal is identical to

#{file} in #{environment} removing

#{file}.plocal")

 File.unlink("#{file}.plocal")

 else

 file = "#{file}.plocal"

 end

end

06/2011 22

DEVELOPERS CORNER

www.bsdmag.org

puppetmaster does the rest. Obviously, most of the tasks
are automated with sanity checks but an interactive
manual approval is always needed before deploying a
new configuration.

Being written in Ruby, puppet is easily extensible
and can be made to do pretty much anything. We are
exploiting this feature quite a bit.For instance we use
a modified version of the available multi_source_template
module which makes it possible to create template files
with a .plocal extension. The .plocal files always get
picked first by this function (in case we need a fast way
to override the default templates on a machine or at a
site).

This is our multi level walk-tree (using /etc/fstab for the
example):

• customer/site/machine/etc/fstab.plocal

• customer/site/machine/etc/fstab

• customer/site/generic/etc/fstab.plocal

• customer/site/generic/etc/fstab

• customer/generic/etc/fstab.plocal

• customer/generic/etc/fstab

• generic/etc/fstab.plocal

• generic/etc/fstab

In addition if a .plocal change gets delegated to the
original file, and the md5 sum of fstab.plocal equals
fstab, the plocal file gets removed automatically.

Here is an extract of our multi_source_template.rb function
to illustrate this feature (see Listing 1).

We also had to extend the support for OpenBSD
packages in puppet like allowing a double - in a package
name to allow for version-less FLAVORs (OpenBSD
concept that is in some ways similar the USE flags in
Gentoo Linux, OPTIONS in FreeBSD and PKG_OPTIONS
in pkgsrc) or forcing the update and updatedepends flags
every time a package gets installed or updated.

Another modification we made was the addition of a
defnode facter variable during puppetd invocation. Since
we have desktop and server machines enlisted in LDAP
all of the nodes are getting pulled from there, but we have
hundreds of workstations so there is no point in listing
them all and we cannot use the default node because that
is used to store default settings applicable to all machines.
Running the puppet daemon as such allow us to specify
the type of machine: env FACTER_defnode=XXX puppetd...
(where XXX can be laptop for example) This feature is
now standard in the OpenBSD package and the patch
can be seen in the ports tree at: http://www.openbsd.org/
cgi-bin/cvsweb/ports/sysutils/ruby-puppet/patches/patch-
lib_puppet_indirector_node_ldap_rb.

����������������

��������������������������������
������������������������������������
��������������������������
����������������������������������
�����������������������������������
�������������������������������

����������������������������������

����� ���
��
����������������������������

��
���
��
��

��������������������������

���
��
��
���
���
���
��

���
��

���������������������������������

��
��
������������������������������

��
���������������������
���

http://www.openbsd.org/cgi-bin/cvsweb/ports/sysutils/ruby-puppet/patches/patch-lib_puppet_indirector_node_ldap_rb
http://www.openbsd.org/cgi-bin/cvsweb/ports/sysutils/ruby-puppet/patches/patch-lib_puppet_indirector_node_ldap_rb
http://www.openbsd.org/cgi-bin/cvsweb/ports/sysutils/ruby-puppet/patches/patch-lib_puppet_indirector_node_ldap_rb
http://www.bsdcertification.org

06/2011 24

DEVELOPERS CORNER

Maintenance
Surprisingly, we are also using puppet for that! The puppet
daemon running on all machines will automatically check
for packages updates, new antivirus definitions... Antivirus
is important because we are interacting with Windows
users and the private and public shares that are available
to the users over NFS on the LAN are also available via
FTP (encapsulated into the IPSEC VPN) from the remote
Windows Terminal server.

For base system updates, we use binpatches built using
the binpatch-ng framework [8]. A binpatch is just a regular
OpenBSD package containing the updated binaries that
also creates a backup of the modifed files at pkg_add(1) time
so that the update can be reverted in case something goes
wrong. Binpatches are handled using the regular OpenBSD
package tools. Backups are handled in two different ways.
On the Desktops we use backintime [9] which takes an
incremental snapshot every hour into a hidden private share
on the NFS server. Backintime is really handy for users
because it provides an easy to use graphical interface to
restore files and directories from a particular point in time (in
some ways similar to Apple Time Machine).

For enterprise compliant backup, we use bacula [10] to
backup all the servers to a central point (that includes the
NFS server, so in fact user data has a double backup).
For bare metal recovery, all that is needed is to bootstrap
a server from scratch then running bacula to restore
everything. Critical files are of course saved off site as
well. This dual setup allows for easy access to backup
recovery mode while maintaining compliancy with
corporate specifications.

Obviously not being physically on site, we need to have
local system administrators. Almost none of them ever
have heard of OpenBSD before. Most worked exclusively
with Windows. To deal with that, we provide them with
several days of theoretical and practical OpenBSD
training. That part is very interesting, because we get
questions and feedback that we would never get from
people used to handling Unix systems.

ANTOINE JACOUTOT
Antoine Jacoutot is an OpenBSD committer who lives in Paris,
France. He is responsible for more than 300 packages, wrote the
sysmerge(8) utility and is part the OpenBSD rc.d(8) framework
development. He runs OpenBSD for pretty much everything.
The section describing our puppet setup and changes was
written in collaboration with OpenBSD committer Robert Nagy
(robert@openbsd.org).

On the ‘Net
[1] Undeadly OpenBSD Journal http://undeadly.org/cgi?action=article&sid=20110420080633
[2] The OpenBSD project http://www.openbsd.org/
[3] Puppet Labs http://www.puppetlabs.com/
[4] M:tier Ltd http://www.mtier.org/
[5] The GNOME Project http://www.gnome.org/
[6] Zabbix Open Source Monitoring Solution http://www.zabbix.com/
[7] OpenNX (OSS drop-in replacement for Nomachine’s nxclient) http://sourceforge.net/projects/opennx/
[8] The binpatchng framework http://binpatchng.puffy-at-work.org/
[9] Back In Time http://backintime.le-web.org/
[10] Bacula Open Source Network Backup Solution http://www.bacula.org/

In the end
It usually takes several months for a complete office to
finally be accustomed to its new solution but in the end
users are very happy with their work environment. It is a
source of great pride for us when entering an office and
seeing all these users running OpenBSD on their machine.
While from a first glance it just looks like another office
like we’ve all seen countless times, when actually paying
attention at what is on the screen it is quite different!

While we are facing several social, legal and
technological challenges, one of the most interesting
ones is the use of OpenBSD on the desktop. Most people
use OpenBSD as a server, router, firewall or embedded
device but for a desktop it is pretty rarely considered (I’m
not including OpenBSD enthusiasts that are the only ones
running an OpenBSD workstation at their workplace).
That means we are building our experience from scratch
because there is not much feedback from anywhere else.
From our point of view, with correct knowledge of the
available tools, OpenBSD (and by extension, any BSD
system) can perfectly fit into the world of the corporate
Desktop.

I hope you enjoyed reading this article that I hope
uncovered some ideas about how OpenBSD can be
used in the enterprise world in a way that is not obviously
expected.

This is a reworked and extended version of an original
article published by the OpenBSD Journal.[1]

mailto:robert@openbsd.org
http://undeadly.org/cgi?action=article&sid=20110420080633
http://www.openbsd.org/
http://www.puppetlabs.com/
http://www.mtier.org/
http://www.gnome.org/
http://www.zabbix.com/
http://sourceforge.net/projects/opennx/
http://binpatchng.puffy-at-work.org/
http://backintime.le-web.org/
http://www.bacula.org/

DragonFly News

www.bsdmag.org 25

Google Summer of Code progress
As this article sees print, the first weeks of Google
Summer of Code 2011 will be underway. Each of
the 6 students involved have posted summaries
of their intended work to the main DragonFly
development list, kernel@dragonflybsd.org. See http://
www.dragonflybsd.org/docs/developer/gsoc2011/ for links to
each of the summaries.

Compiler updates, and more
DragonFly has traditionally had two compilers included in
the base system, with one considered standard and the
other as either potentially the next candidate for the default
compiler, or as backup. DragonFly recently moved from
GCC 4.1 to GCC 4.4 as the base compiler. GCC
4.1 is still present, and can be used for building
by setting CCVER. John Marino and Sascha
Wildner have been taking this even farther.
DragonFly now has binutils 2.20.1, gcc 4.4.6, the
gold linker, and GDB 7.2, for instance,
along with a host of other program
upgrades like texinfo and diffutils, and
the removal of ipfilter.

Chromium and LibreOffice support
Matthias Rampke has been working on Google’s
Chromium browser. Version 11 builds and run on
DragonFly, at least for i386 and possibly for x86_64. The
changes for DragonFly should soon appear in pkgsrc’s
wip/chromium package. Francois Tigeot has done the
same for LibreOffice, the new fork from Sun/Oracle’s
OpenOffice software suite. It builds on DragonFly and can
be found in wip/libreoffice.

Deduplication
HAMMER in DragonFly 2.10 supports deduplication. It
needs to be explicitly enabled with a dedup line in the
configuration for each Hammer pseudo-file system. It’s
possible to find out the potential space savings with
deduplication by running hammer dedup-simulate.

The dedup-simulate command will complete quickly
and provide a ratio number. This ratio is how well the bulk
data on disk overlaps. A ratio of 1.00 means the exact
same amount of space would be taken after deduplication
as before. The higher the number over 1.00, the greater

the deduplication rate. The work described so far is for a
batch process that happens with normal overnight batch
processing, along with other Hammer cleanup tasks.
It is also possible to enable live deduplication with the
sysctl vfs.hammer.live_dedup. Setting it to 1 will cache
data on reads for deduplication, and 2 will enable write
deduplication. This will cause the greatest speedup for
operations like cp and cpdup, or when creating extensive
directory hierarchies.

Multiprocessor changes
DragonFly (and other operating systems at various points)
would historically force the user to choose a kernel that
would support multiple processors. Uniprocessor kernels

on multiprocessor hardware obviously don’t
perform to the machine’s full potential, and
multiprocessor kernels would not work on single-
processor machines. Various kernel options like
IOAPIC would not work in all configurations,

either.
Sepherosa Ziehau has been working

on support for multiprocessor kernels
for any system, regardless of the

number of processors on the system. This also allows
IOAPIC to work, and the generic (2.11) DragonFly kernel
builds with SMP support on by default.

Hammer design
Matthew Dillon has been thinking about how to reach true
multi-master disk support in Hammer, and has posted a
design document on how to reach this state.

He’s calling it HAMMER2. http://apollo.backplane.com/
DFlyMisc/hammer2.txt. This work, as described, retains
most of the features of Hammer so far. In addition to the
multiple master disks, it adds more features like writable
historical snapsnots and quotas.

This project will take some time, though initial code for it
should appear in DragonFly 2.11 soon.

DragonFly News

JUSTIN C. SHERRILL
Justin Sherrill has been publishing the DragonFly BSD Digest
since 2004, and is responsible for several other parts of
DragonFly that aren’t made out of code. He lives in the northeast
United States and works over a thousand feet underground.

mailto:kernel@dragonflybsd.org
http://www.dragonflybsd.org/docs/developer/gsoc2011/
http://www.dragonflybsd.org/docs/developer/gsoc2011/
http://apollo.backplane.com/DFlyMisc/hammer2.txt
http://apollo.backplane.com/DFlyMisc/hammer2.txt

06/2011 26 www.bsdmag.org 27

This installer is primarily a backend, but it can also
be used stand-alone for multiple scripted or single
installations of FreeBSD. In this article we will take

a look at how to use PC-SYSINSTALL, as well as various
configuration options to take advantage of FreeBSD
features which currently cannot be used via the default
installer.

Running PC-SYSINSTALL is relatively simple. When
booting from a recent FreeBSD / PC-BSD 9-CURRENT
snapshot, PC-SYSINSTALL is located in /usr/share/

pc-sysinstall, and also available as the command pc-
sysinstall from the command-line. Starting an installation
is done by using the following syntax:

pc-sysinstall -c <config file>

Once the above command is run, PC-SYSINSTALL
will then read the supplied configuration file, setup the
disk(s), and begin the installation. This configuration file
is where all the magic happens, so lets take a closer look
at it (Listing 1).

Above we can see a typical configuration script, which
would setup a single-disk FreeBSD system. In the first
block of settings we are defining some information about
the type of install, as well as source file locations. In this

case we are doing a fresh FreeBSD installation, from a tar
archive on DVD. These settings normally won’t change
often, assuming you are doing installations from the same
type of media. Next we have a few blocks of code dealing
with localization, such as time-zones and keyboard
layouts.

After this, we come to the disk configuration settings,
which is what will most often be changed from system to
system. In this example, we are starting by defining which
disk is going to be used (ad0), that the entire disk will be
converted into a single MBR partition (ad0s1) and no boot
manager will be installed. The partscheme= setting can be
toggled between MBR/GPT, and if GPT was selected,
then the resulting disk would end up with ad0p1, ad0p2, etc.

With the initial disk options set, next we come to the
partition configuration. In this example, we are creating
four partitions:

• 1000MB partition, formatted UFS and mounted to /boot
• 2000MB SWAP partition
• 2000MB partition formatted UFS with Soft Updates

Journaling and mounted to /
• 15000MB partition formatted UFS with Soft

Updates Journaling and GELI encryption, using the
passphrase mypass and mounted to /usr.

Installing FreeBSD with
PC-SYSINSTALL
Several months ago, the PC-SYSINSTALL system (The installer for
PC-BSD 8.0 and higher) was merged into FreeBSD CURRENT, in
preparation for FreeBSD 9.0.

06/2011 26 www.bsdmag.org 27

Listing 1. Example of a complete PC-SYSINSTALL con�guration �le

#Example pc-sysinstall configuration

installInteractive=no

installMode=fresh

installType=FreeBSD

packageType=tar

installMedium=dvd

Timezone

timeZone=America/New_York

enableNTP=yes

Keyboard Layout Options

localizeKeyModel=pc104

localizeKeyLayout=us

Disk Setup for ad0

disk0=ad0

partition=ALL

bootManager=none

partscheme=MBR

commitDiskPart

Partition Setup for ad0(ALL)

All sizes are expressed in MB

Avail FS Types, UFS, UFS+S, UFS+J, UFS+SUJ, ZFS, SWAP

UFS.eli, UFS+S.eli, UFS+J.eli, UFS+SUJ.eli, ZFS.eli, SWAP.eli

disk0-part=UFS 1000 /boot

disk0-part=SWAP 2000 none

disk0-part=UFS+SUJ 2000 /

disk0-part=UFS+SUJ.eli 15000 /usr

encpass=mypass

commitDiskLabel

Root Password

rootPass=mypass

Users

userName=kris

userComment=Kris Moore

userPass=mypass

userShell=/bin/csh

userHome=/home/kris

userGroups=wheel,operator

autoLoginUser=kris

commitUser

Installing FreeBSD with PC-SYSINSTALL

06/2011 28

DEVELOPERS CORNER

KRIS MOORE
Kris Moore is the founder and lead developer of PC-BSD. He
lives with his wife and four children in East Tennessee (USA),
and enjoys building custom PC’s and gaming in his (limited)
spare time. kris@pcbsd.org

For systems with multiple disks, both code sections
for commitDiskPart and commitDiskLabel can be repeated
multiple times, by changing disk0›disk1›disk2, etc and
supplying new partition configurations.

Last is the user configuration, with values that are fairly
self-explanatory. In this case pc-sysinstall would set the
root password to mypass and then add a single user kris
with the specified settings. As with the disk configuration,
the code block for commitUser could be repeated multiple
times, allowing many users to be created at the same
time.

This is all that is required in the building of a typical
PC-SYSINSTALL configuration script. At this point, the
configuration file would be saved to some location on
disk, and the command pc-sysinstall -c <file> would be
run, with no more user interaction necessary.

In addition to supporting disk features such as
Journaling, Encryption and others, PC-SYSINSTALL also
supports the ZFS file system. Implementing ZFS on disk
requires slightly different syntax in order to accommodate
the differences in how it is implemented. Lets take a
closer look at how this is done in our configuration file
(Listing 2).

In this example, the initial disk setup is the same as
before, but the partition information is implemented slightly
differently. For this disk drive, the configuration disk0-part=
line instructs PC-SYSINSTALL to create a single zpool
(automatically named tank0), use the all available MB
(The 0 flag), and create the following ZFS mount points:
/, /usr, /var, /data. In addition we are able to specify the
flag (mirror: ad1), which inserts the disk ad1 into the zpool,
using mirroring mode. Options for raidz and others can

also be used. Again with this configuration in hand, PC-
SYSINSTALL would be able to take these values and
handle the rest of the installation unattended.

We have taken a brief look at how a PC-SYSINSTALL
configuration file is created and some of the functionality it
offers. Since every install is scripted it is very easy to take
a preexisting configuration file and tweak it to suite your
needs. Common ways to do this are by using examples
from /usr/share/pc-sysinstall/examples/ or by using the PC-
BSD GUI installer to generate a config file, which is saved
in /tmp/sys-install.cfg.

Further Reading and Discussion
Creating automated installations with PC-SYSINSTALL:
http://wiki.pcbsd.org/index.php/Creating_an_Automated_
Installation_with_pc-sysinstall.

Examples and README from SVN: http://
svnweb.freebsd.org/base/head/usr.sbin/pc-sysinstall/
examples/.

PC-BSD Developers Discussion: http://lists.pcbsd.org/
mailman/listinfo/dev.

Listing 2. Disk con�guration using ZFS

 # Disk Setup for ad0

partition=ALL

bootManager=none

partscheme=MBR

commitDiskPart

Partition Setup for ad0(ALL)

All sizes are expressed in MB

Avail FS Types, UFS, UFS+S, UFS+J, UFS+SUJ, ZFS, SWAP

UFS.eli, UFS+S.eli, UFS+J.eli, UFS+SUJ.eli, ZFS.eli, SWAP.eli

disk0-part=ZFS 0 /,/usr,/var,/data (mirror: ad1)

commitDiskLabel

mailto:kris@pcbsd.org
http://wiki.pcbsd.org/index.php/Creating_an_Automated_Installation_with_pc-sysinstall
http://wiki.pcbsd.org/index.php/Creating_an_Automated_Installation_with_pc-sysinstall
http://svnweb.freebsd.org/base/head/usr.sbin/pc-sysinstall/examples/
http://svnweb.freebsd.org/base/head/usr.sbin/pc-sysinstall/examples/
http://svnweb.freebsd.org/base/head/usr.sbin/pc-sysinstall/examples/
http://lists.pcbsd.org/mailman/listinfo/dev
http://lists.pcbsd.org/mailman/listinfo/dev

http://www.exonetric.com

06/2011 30

HOW TO’S An introduction to GIS on FreeBSD

www.bsdmag.org 31

The downside of GIS systems are their complexity
and availability of datasets. Commercial systems
are often prohibitively expensive, and licensing

or organisational restrictions often prevent the sharing
of GIS datasets, so GIS has traditionally been a very
specialized area. Large government organisations often
have a dedicated GIS department or officer, and when the
author was asked to commission a new GIS server, the
steep learning curve was quickly apparent especially as
the terminology and the varied file formats are complex.

To fully exploit GIS, much time and patience are required
but that said, for a capable systems administrator it is
relatively straightforward to configure a basic server to
serve mapping data. A number of custodians are now
releasing their datasets under Open Source licensing,
and while the quality and content may vary, this is a
welcome move and will no doubt help spread the use
of GIS systems where previously the idea would be
unthinkable.

An introduction to GIS on
FreeBSD
Geographic information systems (GIS) are rapidly gaining
popularity both commercially and on the Internet, and used
with location aware devices such as mobile phones can be a
powerful tool for aiding productivity.

What you will learn…
• How to install and initially con�gure Geoserver and PostGIS

What you should know…
• BSD administration skills

Figure 1. A simple vector map, using each of the vector elements:
points for wells, lines for rivers , and a polygon for the lake

Figure 2. A typical complex map tile, with elevation, map and vector
data

06/2011 30

HOW TO’S An introduction to GIS on FreeBSD

www.bsdmag.org 31

one for the tile cache. In this example we will dispense
with the tile-cache.

The server will be configured with Tomcat, Oracle JDK,
Postgresql and PostGIS, and Geoserver.

Tomcat 7 and Oracle Java JDK 1.6
These provide the web-server and runtime JDK
environment for Geoserver.

Geoserver
The GeoServer project is a full transactional Java (J2EE)
implementation of the OpenGIS Consortiums Web
Feature Server (WFS) specification. Additionally an OGC
Web Map Server (WMS) and support for WCS (Web
Coverage Service) and WMS Raster is provided.

PostGIS
PostGIS adds support for geographic objects to the
PostgreSQL object-relational database. In effect, PostGIS
spatially enables the PostgreSQL server, allowing it to
be used as a backend spatial database for geographic

Basic concepts
To quote Wikipedia, In the simplest terms, GIS is the
merging of cartography, statistical analysis and database
technology. GIS data can be stored in many formats,
but the basic concept of presentation is one of tiles and
layers. Whereas a static map could be considered one tile
(e.g. 640 x 800 pixels), the resolution of that map would
be fixed, and if the user attempted to zoom out past the
boundaries of the map this would be impossible. On a GIS
or web-map system, multiple tiles cover a specific area
with a view-port set at a particular resolution. As the user
scrolls the map, further tiles come into view effectively
stitched together by the mapping software. From the base
map, additional data is presented via layers and styles.
Additionally, a geographical node can point to data in a
separate flat file or database e.g. to display population
statistics. To speed up the process and to add additional
functionality, a dedicated tile-cache may be used (for
example to add watermarks). The tile data is stored in
either vector or raster format, depending on the type of
map that is to be displayed (Figures 1-3 Images courtesy
of Wikipedia).

Data sources come in two flavours, Vector and Raster.
Vector data formats include Shapefiles (including
directories of shapefiles), PostGIS databases, External
WFS layers and Java Properties files. Raster data
includes ArcGrid, GeoTIFF, Gtopo30, ImageMosaic and
WorldImage. One of the most popular formats are ESRI
Shapefiles.

Requirements
In a production environment, 3 servers would be used,
one for the mapping software, one for the database and

Figure 3. Example of layers used in GIS work. This map is of an Athens
County, Ohio property, and was made using ArcView GIS 3.3, by John
Knouse

Figure 4. Geoserver login

Figure 5. Tiger:ny layer preview with option toolbar shown

06/2011 32

HOW TO’S An introduction to GIS on FreeBSD

www.bsdmag.org 33

TZUPDATE_VERSION= 1_3_38

TZUPDATE_TZVERSION= 2011e

Update the checksum for distinfo:

cd /usr/ports/distfiles

sha256 tzupdater-1_3_38-2011e.zip >> /usr/ports/java/

jdk16/distinfo

Install Tomcat 7:

cd /usr/ports/www/tomcat7

make install BATCH=YES

echo ‘tomcat7_enable=”YES”’ >> /etc/rc.conf

/usr/local/etc/rc.d/tomcat7 onestart

Once installed, check that Tomcat is running by pointing
your browser at port 8080 of the server.

Install Posgresql database, the client and PostGIS
bindings:

pkg_add -r postgis

echo ‘postgresql_enable=”YES”’ >> /etc/rc.conf

/usr/local/etc/rc.d/postgresql initdb

reboot

information systems, much like ESRI’s SDE or Oracle’s
Spatial extension.

Installation
Proceed as per normal with a FreeBSD 8.2 installation
with the ports tree installed. To install Tomcat 7, this will
be compiled from source and additional files are to be
downloaded as these are outside the FreeBSD licence.
As a prerequisite, I have installed Midnight Commander
(MC), unzip and Wget to allow quick browsing at the
command line as as I installed FreeBSD as a minimal
install.

pkg_add -r mc rename wget unzip

Download the JDK patchset, the JAR files and
TZUPDATE into /usr/ports/distfiles. The patchset and
TZUPDATE need to be downloaded via the web page
as licence agreements need to be confirmed, but the
remaining JAR files can be retrieved using wget:

cd /usr/posts/distfiles

wget http://www.java.net/download/jdk6/6u3/promoted/b05/

jdk-6u3-fcs-src-b05-jrl-24_sep_2007.jar

wget http://www.java.net/download/jdk6/6u3/promoted/b05/

jdk-6u3-fcs-bin-b05-jrl-24_sep_2007.jar

wget http://www.java.net/download/jdk6/6u3/promoted/b05/

jdk-6u3-fcs-mozilla_headers-b05-unix-24_sep_2007.jar

You should now have all the files listed in Table 1
installed in /usr/posts/distfiles.

As the makefile for JDK6 refers to an older version of
TZUPDATE, edit the /usr/ports/java/diablo-jdk16/Makefile
and change the TZUPDATE_VERSION as follows:

Table 1. Additional downloads required for Tomcat install from ports

Files to be added to
/usr/posts/dist�les

tzupdater-1_3_38-2011e.zip
bsd-jdk16-patches-4.tar.bz2
jdk-6u3-fcs-bin-b05-jrl-24_sep_2007.jar
jdk-6u3-fcs-mozilla_headers-b05-unix-
24_sep_2007.jar
jdk-6u3-fcs-src-b05-jrl-24_sep_2007.jar
diablo-caffe-freebsd7-i386-1.6.0_07-
b02.tar.bz2

TZ Updater
(Download via
browser)

http://www.oracle.com/technetwork/
java/javase/downloads/tzupdater-1-3-38-
download-354298.html

JDK Patchset
(Download via
browser)

http://www.eyesbeyond.com/freebsddom/
java/jdk16.html

Fiablo Caffe
(Download via
browser)

http://www.FreeBSDFoundation.org/cgi-
bin/download?download=diablo-caffe-
freebsd7-i386-1.6.0_07-b02.tar.bz2

JDK src, binaries etc. http://www.java.net/download/jdk6/6u3/
promoted/b05/jdk-6u3-fcs-src-b05-jrl-24_
sep_2007.jar

http://www.java.net/download/jdk6/6u3/
promoted/b05/jdk-6u3-fcs-bin-b05-jrl-24_
sep_2007.jar

http://www.java.net/download/jdk6/
6u3/promoted/b05/jdk-6u3-fcs-mozilla_
headers-b05-unix-24_sep_2007.jarFigure 6. NYC roads

http://www.oracle.com/technetwork/java/javase/downloads/tzupdater-1-3-38-download-354298.html
http://www.oracle.com/technetwork/java/javase/downloads/tzupdater-1-3-38-download-354298.html
http://www.oracle.com/technetwork/java/javase/downloads/tzupdater-1-3-38-download-354298.html
http://www.eyesbeyond.com/freebsddom/java/jdk16.html
http://www.eyesbeyond.com/freebsddom/java/jdk16.html
http://www.FreeBSDFoundation.org/cgi-bin/download?download=diablo-caffe-freebsd7-i386-1.6.0_07-b02.tar.bz2
http://www.FreeBSDFoundation.org/cgi-bin/download?download=diablo-caffe-freebsd7-i386-1.6.0_07-b02.tar.bz2
http://www.FreeBSDFoundation.org/cgi-bin/download?download=diablo-caffe-freebsd7-i386-1.6.0_07-b02.tar.bz2
http://www.java.net/download/jdk6/6u3/promoted/b05/jdk-6u3-fcs-src-b05-jrl-24_sep_2007.jar
http://www.java.net/download/jdk6/6u3/promoted/b05/jdk-6u3-fcs-src-b05-jrl-24_sep_2007.jar
http://www.java.net/download/jdk6/6u3/promoted/b05/jdk-6u3-fcs-src-b05-jrl-24_sep_2007.jar
http://www.java.net/download/jdk6/6u3/promoted/b05/jdk-6u3-fcs-bin-b05-jrl-24_sep_2007.jar
http://www.java.net/download/jdk6/6u3/promoted/b05/jdk-6u3-fcs-bin-b05-jrl-24_sep_2007.jar
http://www.java.net/download/jdk6/6u3/promoted/b05/jdk-6u3-fcs-bin-b05-jrl-24_sep_2007.jar
http://www.java.net/download/jdk6/6u3/promoted/b05/jdk-6u3-fcs-mozilla_headers-b05-unix-24_sep_2007.jar
http://www.java.net/download/jdk6/6u3/promoted/b05/jdk-6u3-fcs-mozilla_headers-b05-unix-24_sep_2007.jar
http://www.java.net/download/jdk6/6u3/promoted/b05/jdk-6u3-fcs-mozilla_headers-b05-unix-24_sep_2007.jar

06/2011 32

HOW TO’S An introduction to GIS on FreeBSD

www.bsdmag.org 33

Geoserver is installed by downloading the web archive
(Version 2.1.0) from the Geoserver website and copying
the extracted files into the webapps directory:

/usr/local/etc/rc.d/tomcat7 stop

mkdir /usr/local/apache-tomcat-7.0/webapps/geoserver-2.1.0

cd /usr/local/apache-tomcat-7.0/webapps/geoserver-2.1.0

wget http://downloads.sourceforge.net/geoserver/geoserver-

2.1.0-war.zip

unzip geoserver-2.1.0-war.zip geoserver.war

unzip geoserver.war

chown -R www:www *

/usr/local/etc/rc.d/tomcat7 onestart

The Geoserver zip and war files should now be
moved to another location. Point you browser to http://
yourserver:8080/geoserver-2.1.0 and you should see the
Geoserver login. Navigate to layer preview, select Tiger:
ny Openlayers and drill down on the map and you will
see the corresponding map data. (Figure 4-5).

Adding a shapefile
Copy and extract the shapefiles into the Geoserver tree:

cd /usr/local/apache-tomcat-7.0/webapps/geoserver-2.1.0/

data/data/

mkdir nyc_roads

cd nyc_roads

wget http://docs.geoserver.org/latest/en/user/_downloads/

nyc_roads.zip

unzip nyc_roads.zip

This should extract 4 files nyc _ roads.shp, nyc _ roads.dbf,
nyc _ roads.shx and nyc _ roads.prj into the nyc _ roads

directory.
Login to Geoserver (admin/geoserver) and create a new

workspace called nyc_roads with the name nyc_roads
and the URI http://yourserver/nyc_roads. Create a new
Vector Datasource for the type ESRI Shapefile using the
workspace nyc_roads. The shapefile to use is nyc_roads.shp
in the data directory. When saved, you will be prompted
to publish the new layer, which you should accept. You
will then need to compute the Native/Lat/lon data for the
bounding box, if you click on the link it will calculate all the
parameters for you. Click on the publishing tab and ensure
the default style is line. Save the layer and navigate to
layer preview. Clicking on nyc_roads should present you
with an Openlayers map of the new road Figure 6.

Summary
Setting up a GIS system in a production environment is
not for the faint of heart. Depending on the size of the
dataset, the geographical area covered, and the operation
requirements, numerous servers are required. The current
project that the author is working on, there will eventually
be 5 servers for mapping a very small area of the UK (less
than 50 square miles), and the resulting datasets will be
in the order of many Gigabytes – potentially > 100Gb.
This doesn’t take into account meta-data, clustering or
load balancing etc. which may be required at a later date,
depending on the popularity of the new system.

The biggest problem is getting to grips with the many
different standards, technologies, mathematics and ad
hoc scripts that are used to manipulate and transform
GIS data. This is where a dedicated GIS solution from a
commercial vendor has advantages – all the hard work
has been done for you. However, using Open Source
software brings a major benefit (apart from cost) – you will
truly learn what is happening under the bonnet.

Next article
In the next article, we will look at integrating Postgresql
and adding other data formats.

Table 2. Logins

Application Username Password
Tomcat manager admin admin

Geoserver admin geoserver

References and further reading
• FreeGIS http://www.freegis.org/search?q=wms&_ZopeId

=99954837A45SCMZdhEQ
• Geoserver http://geoserver.org/display/GEOS/Welcome
• PostGIS http://postgis.refractions.net/
• Geoserver Documentation ht tp://docs.geoser ver.org/

stable/en/user/
• Web Mapping O’Reilly Books ISBN 978-0-596-00865-9

Recommended utilities installed via pkg_add
wget unzip
mc rename

ROB SOMERVILLE
Rob Somerville has been passionately involved with technology
both as an amateur and professional since childhood. A passionate
convert to *BSD, he stubbornly refuses to shave off his beard under
any circumstances. Fortunately, his wife understands him (she
was working as a System/36 operator when they �rst met). The
technological passions of their daughter and numerous pets are
still to be revealed.

http://yourserver:8080/geoserver-2.1.0
http://yourserver:8080/geoserver-2.1.0
http://yourserver/nyc_roads
http://www.freegis.org/search?q=wms&_ZopeId=99954837A45SCMZdhEQ
http://www.freegis.org/search?q=wms&_ZopeId=99954837A45SCMZdhEQ
http://geoserver.org/display/GEOS/Welcome
http://postgis.refractions.net/
http://docs.geoserver.org/stable/en/user/
http://docs.geoserver.org/stable/en/user/

06/2011 34

HOW TO’S Exploring The Powers Of The Cloud – Deploying Eyeos On BSD

www.bsdmag.org 35

Yes, I know you’ve been hearing everyone telling stories
about Cloud Computing and how it can do wonders
for you. Well, in this article too, we will not ignore

the regular introductory part. Cloud refers to provisioning
computing as a service, in which you pay for only the service
and not the hardware and infrastructure. Naturally, it saves
costs for an enterprise by a large margin. Be it Google Apps or
even browser-based operating systems; in cloud computing,
you let the cloud service provider deal with the infrastructural
and hardware related costs. However, from a small or
medium sized enterprise’s perspective; self-deployment,
though not so common, seems to be a better (and arguably

cheaper) alternative in the long run. Why? Simply because
for average enterprise cloud needs, deployment hardware is
nothing out of the blue! The best thing about cloud operating
systems is the fact that they can be used from anywhere on
the planet, without any concern for synchronization of data
across multiple machines. All you require is a computer with
an internet connection. However, most of the cloud based
operating systems target either the general traveller-type users
(journalists, writers, coders, etc) or the high-end enterprises
with diversified needs and staffs that span continents. I’m not
that rich. Yet, there are a few cloud Operating Systems that
cater to the needs of the mid-range enterprises as well and

Exploring The Powers Of
The Cloud
Ever thought of running things in the cloud? How about
doing that from your own server, without any extra effort or
cost? We take a look at eyeOS, a cloud OS, and as usual, we
do so on BSD.

Deploying Eyeos On BSD

What you will learn…
• Deploying Cloud OS under BSD host

What you should know…
• Basic concepts about cloud computing and deployment,

pro�ciency with the terminal, patience

Figure 1. The eyeOS Install Wizard Figure 2. Checklist!

06/2011 34

HOW TO’S Exploring The Powers Of The Cloud – Deploying Eyeos On BSD

www.bsdmag.org 35

Installation
Head to www.eyeos.org/downloads and download the
file. There are two builds of eyeOS at the moment: v1.x
and v2.x – choose whichever suits your purpose. In the
Figures, we’ve used eyeOS 2.

In order to run eyeOS as your own server, you will not
need anything extraordinarily powerful. The minimum
hardware required would be a Pentium-class processor
with 256 MB of RAM, 200+ MB free Hard Disk space. The
disk space is likely to increase depending on the number
of users your enterprise has. So it is quite obvious, that
requirements for running eyeOS from your own server are
met by almost every mid-sized enterprise.

On the software front, you’ll need a BSD flavor (I
employed Dragonfly, but you might consider something
more robust like FreeBSD) Apache, PHP and MySQL. But
before going any further, let’s configure PHP and MySQL
for eyeOS installation.

On the software front, you’ll need Apache, PHP and
MySQL on your OS of choice. But before going any further,
let’s configure PHP and MySQL for the eyeOS installation.
The first step would be to create a database for the eyeOS
installation. In the terminal, type the following command:

mysql -u root

Enter your password (if any), and at the prompt, type:

CREATE DATABASE eyeos DEFAULT

CHARACTER SET utf8

COLLATE utf8_unicode_ci ;

Last, run FLUSH PRIVILEGES. That’s it, MySQL is
ready for action! Next, we need to modify the php.ini file
(generally located at php5/apache2/php.ini) The values,
as per the minimum requirements specified above, are
as follows (you will probably need to edit the values on
the basis of your machine specs):

we are going to explore one of them! Not just that. The real
potential of cloud computing can be harnessed if you deploy
it yourself. Fret not, though. Deploying a Cloud OS may be a
complex procedure, but it definitely is not the case if the OS of
choice is eyeOS. As we shall soon see, deployment of eyeOS
can be done even by those with little hardware resources.

The (Not-so-usual) Details eyeOS – What and why?
To make a long story short, eyeOS is a cloud-based OS
powered by Apache, MySQL and PHP.

Desktop
The eyeOS desktop looks like any other operating system
that you would come across. It can be customized on the
basis of themes, though the looks of Windows Aero are
obviously not a possibility. At present, the eyeOS system
supports translations in 30 languages.

Productivity
On the productivity front, eyeOS supports MS Office and Open
Office documents, spreadsheets and presentations. There is
also a Personal Information Management (PIM) system with
basic support for calendars and contacts (import/export in
vCard format). Clearly, the PIM is nothing to drool over.

System
Uploading/downloading files to the cloud is a breeze, and
so is browsing pictures using the default system viewing
application. Compression support for ZIP/TAR formats is
impressive. Additional applications can be installed using
the default package manager. Also, multiple instances of
an application can run at the same time.

Network
eyeOS has a dedicated (proxy) FTP client, messaging client,
RSS Feed Reader and Bulletin Board bundled by default.

Figure 3. Specifying Db Details And Root Db User Figure 4. Install Complete

http://www.eyeos.org/downloads

06/2011 36

HOW TO’S

the root user in the database. If need be, a new user can
also be created using PHPMyAdmin.

That’s it. You’re done with the installation. You’ll be greeted
with a screen such as this: see Figure 4. With that done,
eliminate the install directory from www/eyeos for security
reasons. You can use the root account to create/delete users
and perform other administrative and maintenance tasks.

What’s Next?
Well, you’ve just setup a cloud-OS server. Once you kick
it on, you will land on the nimble and easy-to-use eyeOS
desktop. What this basically means is that you have a fully
functional Operating System, bundled with an Office suite
and other productivity features for enterprise purposes – all
on your own regular piece of hardware, with the only cost of
maintenance being that spent on your regular hardware.

eyeOS by default has a powerful File Manager that
ensures effective management of your data.

In addition, eyeOS productivity and Office suites cater
especially to usage by small firms and medium sized
enterprises. There are programs for performing complex data
entry, taking notes and other related jobs installed by default.
On that note, I leave you to play with eyeOS. Once you
implement the extremely simple installation of eyeOS, gear
up to see the miracles it can perform for your enterprise.

Note
eyeOS website: www.eyeos.org.

memory_limit = 128M

display_errors = Off

post_max_size = 200M

upload_max_filesize = 100M

Note
If your system doesn’t already have PHP-Curl, you’ll need
to install it. Now, set the </www/>variable AllowOverride
to All. Last, restart Apache.

DEPLOYING eyeOS
Extract the downloaded tarball of eyeOS. Next, in a
web browser, navigate to http://127.0.0.1/eyeos/install
(sample IP, of course). If all goes well, you’ll come up with
something like Figure 1. Click the Install eyeOS on my
server link. If there are any red items on the check list,
they need to be resolved.

Once all items are green/orange, proceed to the next
screen, wherein you’ll need to enter details about your
database configuration as well specify the password for

Figure 6. The eyeOS File Manager

SUFYAN BIN UZAYR
Sufyan bin Uzayr is a 20-year old freelance writer, graphic artist,
programmer and photographer based in India. He writes for
several print magazines as well as technology blogs. His prime
areas of interest include open source, mobile development, web
CMS and vector art. He is also the Founder and Editor-in-Chief
of http://www.bravenewworld.in He can be reached at http://
www.sufyan.co.nr

Figure 7. eyeOS Calendar Pim

Figure 5. The eyeOS Desktop

http://www.eyeos.org
http://127.0.0.1/eyeos/install
http://www.bravenewworld.in
http://www.sufyan.co.nr
http://www.sufyan.co.nr

http://www.dotlike.net/

06/2011 38

HOW TO’S NanoBSD and ALIX

www.bsdmag.org 39

CF cards can be written to only a limited number of
times so putting your /var and its logfiles on it, will
quickly wear out the card. To adress this issue and

others, Poul-Henning Kamp wrote a script called nanobsd.sh.
NanoBSD is not a fork from FreeBSD, but an optimized build
script for read-only media. This article gives an overview of
NanoBSD in general and my setup in more detail.

The working of NanoBSD
When NanoBSD boots, / (and its subdirectories like /boot,
/root and /usr) are mounted as a read-only file system,
while /etc and /var are mounted as read-write file systems
on memory disks. The content of these memory disks is
lost when the power is lost or when the system reboots.

There is a partition on the NanoBSD CF card reserved
for the persistent storage of the /etc configuration files.
This partition is mounted early in the boot process as
/cfg and the files are copied to the /etc memory disk.
During normal operation the /cfg partition is not mounted
to prevent accidental writes to the configuration files. A
number of scripts are used to keep the /cfg partition up to
date with changed configuration files in /etc.

The CF card contains three partitions in total. The p3
partition is used for the persistent storage of configuration
files. The p1 and p2 partitions both contain a/file system.
This is very convenient for a system upgrade and roll-
back as we will see in a later section.

The building of NanoBSD
NanoBSD is built off-line, which means that the preparation,
build and installation process has no impact on the build
system or the live NanoBSD system. It will produce image
files that can be put on the CF card in the NanoBSD system.
There are a number of important files and directories.

nanobsd.sh
The script has been located in the FreeBSD source tree
since FreeBSD 6.0 and can be found in the /usr/src/tools/
tools/nanobsd directory. Running the script with no options
will produce a disk image with a GENERIC kernel and a
complete world. A nanobsd.conf configuration file can be
used to tune the build process.

nanobsd.conf
This configuration file overrides defaults that are set in
the nanobsd.sh script. These defaults include the name, the
architecture, the world options and kernel configuration.

It is also possible to add custom script functions in order
to tune the system even further.

Adding ports and files
Because the/file system is read-only, ports have to be
added during the build process. All port files (distfiles) that
reside in the /usr/src/tools/tools/nanobsd/Pkg directory are
compiled and installed before the image file is created.

NanoBSD and ALIX

In the previous issue of BSD Magazine, Bill Harris described
how to do a basic installation of FreeBSD on a PC-Engines
ALIX board with a Compact Flash card. This is a great way to
get started, but there are some risks to this approach.

What you will learn…
• The working of and working with NanoBSD
• The creation of NanoBSD for an embedded system

What you should know…
• Your way around a FreeBSD system
• Basic system administration
• How to compile FreeBSD from source

06/2011 38

HOW TO’S NanoBSD and ALIX

www.bsdmag.org 39

 # mdconfig -a -t vnode -f /usr/obj/nanobsd.NANOBSD/_

.disk.image -u 1

 # mount -t ufs /dev/md1a /mnt

The /mnt directory now contains the root of the CF card’s
/ partiton. Unmount it by running

 # umount /mnt

 # mdconfig -d -u 1

Upgrading / Updating NanoBSD
One of the features of NanoBSD is the offline upgrade
and roll-back mechanism, allowing for upgrades to the
base system with only seconds of downtime.

The nanobsd.sh script generates two image files. One
full disk image and one partition image. In the previous
steps, the full disk image was used to fill a CF card. On a
running NanoBSD system, there is no need to remove the
CF card to perform an upgrade.

The second partition can be upgraded while the system is
running from the first partition. When the system is ready to
be rebooted (in the maintenance window), booting from the
second partition will start the upgraded system. Assuming
the first partition is the active partition, run

 # sh /root/upgradep2 < _.disk.image

on the NanoBSD system to upgrade the second partition.
(/root/upgradep1 will upgrade the first partition).

The system will be set to boot from this partition. When
the system is ready to be rebooted, reboot.

 # reboot

If the upgrade was unsuccessful, simply set the boot
partition back to the first partition and reboot.

The system will revert to the not-yet upgraded
partition.

 # boot0cfg -v -s 1 ad0

 # reboot

The active partition can also be selected using the [F1]
and [F2] keys during startup.

NanoBSD for ALIX
The following chapters will show my build system,
configuration files and caveats.

The hardware I used is the PC Engines ALIX 2D13
board. I had it lying around from my tests with pfSense. It
has the following features:

The distfiles must be of the same architecture as the target
system and do not forget to install all dependencies as well!
These dependencies can be found in the port description
on the www.FreeBSD.org/ports page. Individual files that
reside in the /usr/src/tools/tools/nanobsd/Files directory are
copied before the image file is created.

Build process
With a source tree of the desired FreeBSD version in /usr/
src, the commands

 # cd /usr/src/tools/tools/nanobsd

 # sh nanobsd.sh

will start the build process. The detailed output of the
process is written to logfiles and only high-level progress
status is written to the screen. All files are located under
/usr/obj/nanobsd.NANOBSD. The most important files are

• _ .bw (build world logfile),
• _ .bk (build kernel logfile),
• _ .iw (install world logfile),
• _ .ik (install kernel logfile),
• _ .disk.full (full disk image for the entire CF card)
• _ .disk.image (partition image for one partition on an

existing NanoBSD CF card)

If something did go wrong, the only indication, is the
termination of the script before an image file is created.
Reading the logfile of the last reported step will give
more info on the exact reason for failing.

If parts of the build process have already been
completed before the process failed, these parts can
be reused in the new build by specifying command line
options to nanobsd.sh:

-n – do not clean directories before building
-k – do not build kernel
-w – do not build world
-b – do not build anything

After the image file is created, it is transferred to the CF
card using a (generic USB) card reader. CF cards are
typically seen as ATA drives, so the device name will be
something like ad1 or ad2. Running

 # dd if=/usr/obj/nanobsd.NANOBSD/_.disk.full of=/dev/ad1 bs=64k

transfers the image file to the CF card. /dev/ad1 is the CF
card here. The created partition image can be mounted
directly by running

http://www.FreeBSD.org/ports

06/2011 40

HOW TO’S

www.bsdmag.org

Listing 1. The complete nanobsd.conf

 NANO_NAME=ALIX # directory will be /usr/obj/nanobsd.ALIX

 NANO_DRIVE="ad0" # target drive for the CF card is ATA

 NANO_ARCH=i386 # architecture

 NANO_KERNEL=ALIX # kernel file

 NANO_BOOTLOADER="boot/boot0"

 NANO_BOOT0CFG="-o nopacket -s 1 -m 3" # ALIX boot options

 NANO_MEDIASIZE=1981728 # 1Gb Sandisk CF card

 NANO_SECTS=63

 NANO_HEADS=32

 CONF_WORLD='

 TARGET=i386

 TARGET_ARCH=i386

 TARGET_CPUTYPE=pentium-mmx

 # WITHOUT_ options can be inserted here

 # examples are WITHOUT_BLUETOOTH, WITHOUT_I4B and WITHOUT_PROFILE

 '

 # This function enables three tweaks for embedded systems

 cust_embedded_setup() {

 # turn off ascii beastie as boot menu

 echo 'autoboot_delay="4"' >> ${NANO_WORLDDIR}/boot/loader.conf

 echo 'beastie_disable="YES"' >> ${NANO_WORLDDIR}/boot/loader.conf

 # turn on noatime for /cfg for more performance

 sed -i "" -e "/cfg/s/rw/rw,noatime/" ${NANO_WORLDDIR}/etc/fstab

 # No "message of the day" for me

 rm ${NANO_WORLDDIR}/etc/motd

 touch ${NANO_WORLDDIR}/etc/motd

 }

 customize_cmd cust_embedded_setup

 # We only have a serial port for console

 customize_cmd cust_comconsole

 # We allow root to ssh directly

 customize_cmd cust_allow_ssh_root

 # Install files in /usr/src/tools/tools/nanobsd/Files

 customize_cmd cust_install_files

 # Install packages in /usr/src/tools/tools/nanobsd/Pkg

 customize_cmd cust_pkg

06/2011 40

HOW TO’S

www.bsdmag.org

• AMD Geode LX800 + glxsb hardware crypto
• 256 MB RAM
• 3 x VIA Rhine network interface (vr)
• IDE CF card slot (master)
• IDE 44-pin interface (slave)
• RTC / USB / I2C / Serial ports

An ideal board for a dedicated firewall/VPN appliance
and so much more. My build system is a virtual machine
on my laptop running FreeBSD 8.2 amd64 on scsi disks.
This means we will have to cross compile, as the ALIX
board has an i386 architecture and an IDE disk interface.

NanoBSD config
The most important configuration aspects for the ALIX
platform are the target architecture (i386), the target drive
(ad0) and the bootoptions (-o nopacket).

We also have to specify the size of the CF card in
sectors. This can be tricky, as the values of the sectors
and heads of the CF card are often reported incorrectly
by the various system tools. We start with the number of
blocks. Running

 # diskinfo /dev/ad0

 /dev/ad0 512 1014644736 1981728 967 64 32

will give a NANO _ MEDIASIZE of 1014644736 / 512 = 1981728
blocks. (diskinfo sees 967 cylinders, 64 sectors and 32
heads.) The safes way to fill the NANO _ SECTS and NANO _

HEADS is to put the CF card in the ALIX board and boot
from it (see the booting section below). It will report

 PC Engines ALIX.2 v0.99h

 640 KB Base Memory

 261120 KB Extended Memory

 01F0 Master 044A CF 1GB

 Phys C/H/S 1966/16/63 Log C/H/S 983/32/63

So the system thinks the card has 983 logical cylinders, 32
heads and 63 sectors. That’s what we have to work with.
The complete nanobsd.conf looks like this: see Listing 1.

The cust_embedded_setup function will turn off the beastie
ascii art, set the boot delay to 2 seconds and remove the
motd (settings I like on my headless platforms).

Kernel config
A GENERIC kernel works fine for ALIX boards, but we can
tune the configuration for a leaner kernel with hardware
crypto enabled. The processor is i586 (pentium-mmx)
compatible

http://bsdmag.org

06/2011 42

HOW TO’S

 cpu I586_CPU

 ident ALIX

 options CPU_GEODE

The network interface is a VIA Rhine, so only the vr and
miibus devices are needed.

 device miibus # MII bus support

 device vr # VIA Rhine, Rhine II

Memory disks are an essential part of NanoBSD.

 device md # Memory „disks”

The Geode processor has a hardware crypto module,
so we need to enable the glxsb, crypto and cryptodev
devices.

 device crypto # core crypto support

 device cryptodev # /dev/crypto for access to h/w

 device glxsb # AMD Geode LX Security Block

Booting for the first time
After creating the CF card an inserting it into the board,
connect a serial cable and start a terminal program. I like
to use the screen command for this

 # screen /dev/tty.PL2303 38400

(Yes, I use a Prolific serial-to-usb converter here.)
The ALIX boards run 38400,8,n,1 out of the box, so the

terminal program has to work at this baud rate. The first
thing I do is set it to 9600 baud by hitting the s key during
the memory test and pressing the 9 key for 9600 baud.
Save the config and restart the terminal program

 # screen /dev/tty.PL2303 9600

ALIX boots and we are presented with a choice. [F1]
for FreeBSD or [F2] for FreeBSD. These are the two
partitions on the CF card that both contain the / file
system.

This is the moment to chose which partition to boot if an
upgrade of a partition completely failed.

Special thanks
• Poul-Henning Kamp for giving us NanoBSD. He doesn’t like personal pages, but this is his real one: http://people.freebsd.org/~phk/
• pfSense for getting me interested in NanoBSD and for providing all my �rewall needs: http://www.pfsense.org
• Paul Schenkeveld for performing excellent work on the use of NanoBSD and extending the use to regular production servers with

ZFS and Jails. http://www.psconsult.nl/talks/NLLGG-BSDdag-Servers/
• PC-Engines for their nifty boards: http://www.pcengines.ch/

ERWIN KOOI
Erwin Kooi is an information security manager for a large grid
operator. He started with FreeBSD 4.4 and is an avid fan ever
since.

Configuring the live system
The configuration of NanoBSD is equal to configuring
FreeBSD. You can revert to Bill Harris’ article in the
previous issue for a quick start.

Because the / file system is read-only and the /etc file
system is a memory disk, it is very important to sync the
configuration files in /etc to /cfg after changes. There is
a number of scripts in the /root directory to help with this
synchronisation.

change_password change the root password and sync it to /cfg

save_cfg sync changed files in /etc to /cfg

save_sshkeys sync changed ssh keys in /etc/ssh to /cfg/ssh

updatep1 update the first partition with a new

partiton image

updatep2 update the second partition with a new

partition image

Paul Schenkeveld wrote an excellent sync script called
cfgsync that will automatically sync all content of /etc,
including subdirectories (see the special thanks section
below).

Where do we go from here?
After playing with embedded systems, I wondered if it was
possible to use this concept on my production servers as
well. As it turns out, Paul Schenkeveld has had that same
idea and extended it with ZFS (see BSD Magazine issue
02/2011) and Jails for a server with near-zero downtime,
even for full systems or ports upgrades. He wrote a
paper on it and gave talks at AsiaBSDcon2010 and the
Dutch NLLGG in December 2010. If you are interested in
NanoBSD, I strongly recommend reading his paper.

There are also a number of well-known projects that
use NanoBSD as their base. Examples are the pfSense
firewall (see BSD Magazine issue 02/2011) and the
FreeNAS file server (again, see BSD Magazine issue 02/
2011).

http://people.freebsd.org/~phk/
http://www.pfsense.org
http://www.psconsult.nl/talks/NLLGG-BSDdag-Servers/
http://www.pcengines.ch/

http://2011.eurobsdcon.org

06/2011 44

HOW TOS Mutt On OS X

www.bsdmag.org 45

Handling attachments with Mail.app or most GUI
mail user agents is so easy that we never really
need to think about it (until we have an attachment

that our computer doesn’t know what to do with.) With Mutt,
things are a little trickier, as you might imagine, since Mutt is
a text-based mail reader and a lot of incoming attachments
are intended to be used with a GUI application. Let’s say,
for example, you are sent some photographs. In Mail.app,
they are generally displayed inline, along with the body of
the email. You could also save the files and then open them
with any program that has the capability of showing you
the images (preview, photoshop, firefox, etc...) Mutt has
similar options available, i.e., you can save the attachment
and then view it in whichever program you choose, or Mutt
can open the attachment for you automatically (Terminal.app
won’t let you view images within your console, however
there are console programs that can render images for
you, such as zgv[1].)

In Mutt, saving attachments and opening them is as
simple as pressing v while reading a mail message that
contains attachments, and then choosing which attachment
to save and pressing s. You can then open the attachment
via Finder. If you’d like to open the attachment directly
(in other words, by pressing v and then choosing the
attachment and simply pressing return, thereby skipping
the save the file somewhere and open it with Finder steps,
you’ll need to create a mailcap file. A mailcap file contains a

list of MIME types along with what program to use to handle
attachments of the corresponding type. If our computers
spoke english, we could request, if my mail application
comes upon an attachment that is a jpeg image, please
open it with my favorite photo viewer, however, while we
cannot make the request this way, our macs are based on
Unix and so we can do even better: we can add something
like the following to our .mailcap file:

 image/jpeg; /Path/To/My/Favorite/PhotoViewer.app %s

In fact, it gets even better! OS X has a command-line
program named open, which will open whatever file we
ask, with the default application designated to open it
that type of file. How convenient! To make it easier, Eric
Gebhart has written a great shell script (aptly named view _

attachment.sh) that gives us more control over when and
how to open various attachments. For the most part, it
simply acts as a wrapper for open, but it can be configured
to take action in other ways as well. You can download
a copy of view _ attachment.sh from my site [2]. I found it
via an amazing Mutt on OS X tutorial written by Vincent
Danen [3] (HUGE thanks to Vincent!). Once you download
view _ attachment.sh, you should keep it somewhere it will
be safe (I keep mine in my .mutt folder, i.e., ~/.mutt/view _

attachment.sh) and then you’ll need to create a .mailcap file.
A very basic .mailcap file could then contain:

Mutt On OS X

When we last left our heroes (in April, 2011 issue of BSD
Magazine), I had briefly discussed searching our Mac’s address
book as well as begin the process of setting up a complex,
multi-account Mutt setup. In this article, I’ll go a bit deeper into
setting up Mutt to make the most of Gmail’s features, as well as
a way to handle attachments on your Mac.

Part III

What you will learn…
• How to handle attachments with Mutt on OS X
• How to gain deeper integration with Gmail in Mutt on OS X

What you should know…
• This article is a continuation of my Mutt on OS X articles, it’s re-

commended you begin with the �rst article which appeared in
BSD Magazine’s 02/2011 issue)

06/2011 44

HOW TOS Mutt On OS X

www.bsdmag.org 45

You may have noticed that Google doesn’t really want
you to delete mail (they give you tons of space so you
won’t have to). When you’re done with a message, it
generally gets archived instead of deleted. Deleting
unwanted mail is possible, however, and you can archive
or delete mail via Mutt. To delete mail, you’d want to tell
Mutt that your trash folder is the remote Gmail trash bin,
and then delete the message, which would then move the
message to Gmail’s bin (as opposed to your local trash
file). Remember, if you simply delete the message in
Mutt, Gmail will keep an archive of the message. So how
do you view those archived emails? Easy! You just need
to view the All Mail folder. You could use Mutt’s change
folder commands, or you could create a macro that does
it for you. I found info on this on Lifehacker and Tech
Republic, see the resources for links to those entries if
you’re interested [7] [8].

If you had doubts about the power and flexibility of Mutt,
I hope those have all been dispelled by now! Mutt can
really do it all, even if it has to ask a few Unix utility friends
for some help. As I said when I started this article series,
some people just don’t see the point of using a text-based
mail reader when you’re sitting at a Mac. If you don’t like
Mail.app, there’s Thunderbird, or even Sparrow – surely
you can find a GUI program that fits the bill? I’m not the
only one who sees the benefit of staying in my Terminal,
though! On that note, I’d like to mention that I had not
planned on writing a part 3 of my Mutt on OS X articles
but apparently I had left a reader hanging, hoping to hear
more tips! So Richard, this article is for you! Thanks for
reading, and I hope you’ve enjoyed this article and the
rest of the magazine as well. Until next time...

 image/jpeg; /Users/you/.mutt/view_attachment.sh %s

And that would be enough to tell mutt that if you ask it to
open a jpeg image attachment that it should look for view _

attachment.sh and let it take over from there. This would
result in the OS X command open to be invoked, and unless
you’ve changed the default jpeg viewer, the image will be
opened with Preview.app. You can use your favorite text
editor (vim?) to create your .mailcap file, and make your it
as detailed as you like, or you could even download Vincent
Danen’s extensive mailcap file from his site (see resources.)

Opening HTML email in Mutt requires you to view the
HTML attachment portion of the email the same as you
would any other attachment. You can configure your
.mailcap to open HTML files with view_attachment.sh, which
would result in the file being opened with your default
web browser. Vincent says, it’s gay to use safari for this,
and he recommends using elinks or another text-based
browser. This is your setup, though – feel free to open
your attachments with whatever you choose! I like to use
my default browser (Firefox) because it generally allows
me to see the HTML mail the way the sender expects. Of
course, I’m not a huge fan of HTML mail in general, but
that doesn’t stop people from sending it to me anyway! If
you’d like to read the fine manual regarding mailcap files,
you can find all the juicy details in RFC 1524 [4].

Since we’ve been using Gmail as an example for all of
the mail setup so far, I thought it would be worth mentioning
that you can get quite deep Gmail integration in Mutt. For
example, I’ve mentioned in a previous article that you can
search your local Mac address book, but what if you want to
use your Gmail contacts? For that you can use GooBook.
As it says on the GooBook site [5], The purpose of GooBook
is to make it possible to use your Google Contacts from the
command-line and from MUAs such as Mutt. If this sounds
like something you’d like, you can find all the info you need
at the GooBook home page, along with instructions on how
to integrate it with your existing Mutt setup.

Another thing you might miss from Gmail is the ability
to flag messages as spam (or tell Gmail a message isn’t
spam). Interestingly (and conveniently!) it turns out that
this is actually quite simple from within Mutt, because the
action of marking a message as spam in Gmail is not a
special script or piece of programming, it’s actually as
easy as moving a message into the spam folder. There’s
a User Story in the Mutt Wiki that explains how to set up a
macro to do this for you – basically creating a macro that
you can bind a key for that will either mark a message as
spam (i.e., move it to the Spam folder) or mark it as ham
/ non-spam (i.e., move it to the Inbox). You can find a link
to this User Story in the resources [6].

On the ‘Net
• http://www.svgalib.org/rus/zgv/ [1]
• http://www.culmination.org/Mike/view_attachment.sh [2]
• http://linsec.ca/Using_mutt_on_OS_X [3]
• http://tools.ietf.org/html/rfc1524 [4]
• http://pypi.python.org/pypi/goobook/1.4alpha4#about [5]
• http://wiki.mutt.org/?UserStory/GmailMultiIMAP [6]
• http://lifehacker.com/5574557/how-to-use-the-fast-and-

powerful-mutt-email-client-with-gmail [7]
• http://www.techrepublic.com/blog/opensource/easy-gmail-

reading-with-mutt/1737 [8]

MICHAEL HERNANDEZ
Mike is an IT consultant and web programmer. He lives in
Brooklyn, New York, and he and his wife are celebrating
their one year anniversary on February 14th. He also loves
electronic dance music and commuting on his �xed gear bike,
appropriately named Constance.

http://www.svgalib.org/rus/zgv/
http://www.culmination.org/Mike/view_attachment.sh
http://linsec.ca/Using_mutt_on_OS_X
http://tools.ietf.org/html/rfc1524
http://pypi.python.org/pypi/goobook/1.4alpha4#about
http://wiki.mutt.org/?UserStory/GmailMultiIMAP
http://lifehacker.com/5574557/how-to-use-the-fast-and-powerful-mutt-email-client-with-gmail
http://lifehacker.com/5574557/how-to-use-the-fast-and-powerful-mutt-email-client-with-gmail
http://www.techrepublic.com/blog/opensource/easy-gmail-reading-with-mutt/1737
http://www.techrepublic.com/blog/opensource/easy-gmail-reading-with-mutt/1737

06/2011 46

LET’S TALK OpenBSD Networking

www.bsdmag.org 47

A lot of water has flown under the bridge since then.
Governments changed, I changed companies, the
world of technology has seen a lot of developments

but my love with OpenBSD that started then has not
relented one bit. And interestingly this has nothing to
do with crypto. It is perfectly true that what made me try
OpenBSD was certainly crypto.

Networking
But to say that crypto is what OpenBSD is good at is
like saying that sun is good at throwing light. Of course
yes. Sun is primarily a light source. But there cannot
be any life without sun. It is a source of heat, life giving
photosynthesis cannot happen without the sun’s rays.

OpenBSD’s kernel code is the best I have seen. And I
focused only on the networking parts since I was not, after
all, writing a scheduler or a disk driver. I was writing IPsec.
For porting IPsec, I only needed to know the kernel parts
dealing with networking.

The general approach of cleanliness, beauty and grace
found in OpenBSD is all pervasive; even in its third party
packages known as ports.

Now we are getting to the point.
OpenBSD is all about getting your job done with the

minimum effort.
Why do we choose an OS but to get our job done

quickly? Sometimes the learning curve is steep and

annoying but then that is part of the bargain. No use
cribbing(??) about it. Some people like to suffer some
pain to get a sweet fruit.

If you take the pains to master OpenBSD and in
particular its networking capabilities then you can enrich
your life in a lot of ways.

Most of my work nowadays revolve around systems
administration though I have not had a job for more than 5
years. My products all require very advanced networking
knowledge.

And guess what? You don’t muck around with the kernel
code to do high-end networking work.

You need to understand real life situations and know
what is done by what. What is the userland’s , the kernel’s
and the hardware’s role?

Without this eye for technical detail you don’t become a
great systems admin or a great networking engineer.

And OpenBSD offers networking in its kernel (of course),
base system toolset like ifconfig(8) and of course, its rich
repertoire of third party packages called ports.

Some of the tools I use for sophisticated networking are
written by the official developers themselves but they are
ports rather than installed as part of the base OS. The
developers could easily have licensed it to be part of the
OS. The reason they did not do so was that the base
should be of maximal use to people. We don’t want bits
that are optional to be mandatory.

OpenBSD Networking

OpenBSD has an often mistaken image across the world
that it stands for cryptography and crypto alone. Only for
security applications OpenBSD is a good choice. This is what
I used to think till I started looking at its IPsec stack in 2003.

What you will learn…
• Why should you try OpenBSD

What you should know…
• Basic understanding of UNIX and BSD world

06/2011 46

LET’S TALK OpenBSD Networking

www.bsdmag.org 47

And the destination IP address once rewritten, gets
irretrievably lost.

This is not a great situation. Instead you can use the
pf(4) route-to switch to route SMTP traffic without address
rewrite. But this will work only within a network.

There is a lot of fine print that is not clearly mentioned in
the man pages and it is also not a reasonable expectation.
One has to learn by experience; there is really no other
way.

Apropos of networking bridges and relayd(8) load
balancing come to mind. OpenBSD bridging is equivalent
to Linux bridges or Windows bridges in that it also does
STP and acts as a managed switch.

But there are interesting possibilities when you combine
bridging with firewalling or link failover.

The trunk(4) interface is a way to assign the same IP
address to two physical links and you can bridge this link
pair with a third link to provide transparent high availability
of links.

Now relayd(8) helps us with high availability by doing a
health check of third party servers which could be running
some proprietary OS or service. The health check is done
from the network; so it does not matter.

The other thing that gives us high availability is the
CARP protocol which is a layer III protocol that uses
multicast to fail over multiple nodes with the same virtual
IP address.

As we can guess from all the above OpenBSD offers a
garden variety of various networking options; which even
the costliest commercial offerings cannot match, let alone
exceed.

So why waste money on big brands where your time and
knowledge can serve you better instead? For support?

Fret not. You can get OpenBSD support at a much lower
cost; some of the developers will be glad to get paid a few
extra dollars for solving your critical needs.

And before I conclude let us not forget that Internet
core routing protocol BGP 4 (No Internet without that) has
an implementation in OpenBSD by Henning Brauer and
party. OSPF which is a necessary evil, is also included.
So is RIP which is historical cruft.

I never got a chance to play with these things but this
article is already long and we need to end somewhere.

Examples include greyscanner, pftop and gotthard.
Regardless we are going to see in this article how to do
certain cool things with OpenBSD.

Interestingly ultra powerful tools like OpenBSD’s pf(4) or
carp(4) are not meant to be used with other BSDs. If you
are attracted to OpenBSD innovations then why use an
inferior alternative?

Always bear in mind that an OS is a complete
whole. Everything has to work in concert to provide a
sophisticated feature like load balancing.

Now that we are talking about that, we have both load
balancing and SNMP in OpenBSD base. Now we also
have LDAP but I have not had time to play with it yet.

I have been focusing solely on spamd(8) for around 4
years now and I can find plenty of new ways for it to work
in concert with the facilities provided by CARP clustering,
pf(4) redirection and so on.

Each new day I am discovering a new application for
solving hard networking problems. Real life situations are
so much fun as opposed to laboratory situations.

For instance as I writing this article I am solving a
problem for an ISP in Gujarat, India who is having trouble
with his IPs getting blacklisted for being a spam source.

Initially I told the guy that I could not help this directly.
Then after 40 days it occurred to me I could indeed do
something about it.

And here I am, trying to deploy spamd in a manner that
I never was exposed to before.

I admit that quite a few advanced tricks take a long time
to master and get comfortable with. It is like a poet getting
inspired to write poems or a music composer to create
new tunes. Or even a Veena player learning how to play
a new raga.

Inspiration comes from the subconscious and
networking is no different. Once you gain the mastery that
is so hard to come by in the beginning, later it becomes
effortless and automatic.

In general spamd(8) can be deployed wherever port
forwarding is possible. Initially the corporate firewall
port-forwards SMTP traffic to SpamCheetah, followed
by SpamCheetah port-forwarding mails to the company’s
mail server and the spam being forwarded to 127.0.0.1
port 8025.

This is a very long story cut short on how spamd(8)
works.

But this is just one application. Perhaps the most
common but by no means the only.

spamd(8) can be used to stop outgoing spam, it can also
be deployed without any port forwarding. Port forwarding
complicates matters since you have to muck around with
the default gateway of the forwarded host.

GIRISH VENKATACHALAM
Girish has close to 15 years of UNIX experience and he loves
OpenBSD more than he loves anything else in the technology
world.

06/2011 48

LET’S TALK

OMAP3 products support a wide range of end
equipments, from entry-level multimedia-enabled
handsets to high-end Mobile Internet Devices

(MIDs). OMAP3 has many advantages differentiate it from the
other processors. Some of them are low power consumption,
High speed I/O interfaces, Packaging, Module Availability,
Multimedia processing, M-Shield Hardware Security and
many more!. So, an urgent need led to OMAP3 porting.
The boards we used for porting are BeagleBoard and
BeagleBoardXM. One of the challenges of porting OMAP3
was the emulation process due to the fact that there is no
software capable of emulating OMAP3 configured kernel
on FreeBSD host. From my experience, the best emulator is
qemu-maemo from Meego Tree which can run over Linux. A
good start in the porting process was to work with Dockstar
Machine since It shares the same ARM core (ARM926EJ-
S) with OMAP1710, OMAP1610, OMAP1611, OMAP1612,
OMAP-L137, OMAP-L138 devices. Sample configurations
achieved by FreeBSD Kirkwood Team. They configured
Dockstar with DOCKSTAR-COOLTRAINER identity, 128 MB
physical memory, different serial ports, Networking, Ethernet,
Wireless NIC Cards, USB wireless, Process Communication,
NFS, OpenBSD Packet Filter, Swap Space and USB Audio. As
a result, a team consisting of Warner Losh and me is working
on Porting OMAP3 Completely. OMAP3 has partial support in
FreeBSD by individual developers. One of those patches was
developed by Mark Murray http://people.freebsd.org/~markm/
src.beagleboard.diff and the complete support will be available
soon. I spent much time trying to solve the omap3 emulation
problem and I found qemu-maemo which supports two types
of emulations. The first is running full system emulation (i.e.
have a complete system with kernel and so on running inside
the emulation) and the second is user mode emulation (i.e.
have a single user mode process running under emulation like
running a standalone ARM bash binary in your host system).

If the former, pass the parameter --target-list=arm-softmmu
to qemu configure script. If the latter, pass the parameter -
-target-list=arm-linux-user or arm-bsd-user in case if your
host is BSD and not Linux. At OMAP3 full system emulation,
I should compose the kernel with u-boot for NetBSD which
is similar to this one on FreeBSD. Thus to have successful
kernel emulation, we should build the kernel which produces
a kernel.bin binary file and a kernel ELF file. The process is a
bit more complex, because u-boot expects a special header
in front of ELF files. You will need the mkimage binary that can
be installed from ports in devel/u-boot. To get it installed, type
in the following commands:

myhost % cd /usr/ports/devel/u-boot

myhost % sudo make install

Once mkimage is installed, you can convert your kernel
image file into an image that u-boot can load and run. Since
u-boot doesn’t support FreeBSD images, the following
command instructs it to treat the kernel as a NetBSD image.
Luckily, the behavior of u-boot in the case of a NetBSD
image is generic enough so that things work anyway.

myhost % mkimage -A arm -O netbsd -T kernel -C none -a

80200000 -e 802000e0 -n „FreeBSD” -d path_to_kernel/kernel ukernel

You should obtain a ukernel file, that you can emulate on
Ubuntu using qemu-maemo. Qemu-maemo can emulate
multiple OMAP3 machines and we can retrieve a set of
all machines using -M ? parameter. It supports beagle,
beaglexm and n900 machines.

OMAP3 Full Support is
Coming Soon in FreeBSD
The trend in the FreeBSD development is bringing FreeBSD
for new sets of hardware. The OMAP™ 3 family of multimedia
applications processors from TI introduces a new level of
performance that enables laptop-like productivity and advanced
entertainment in multimedia-enabled mobile devices.

MOHAMMED FARRAG
Mohammed Farrag, FreeBSD Contributor, ArabBSD Project
Manager and Google Technology User Group Administrator.

http://people.freebsd.org/~markm/src.beagleboard.diff
http://people.freebsd.org/~markm/src.beagleboard.diff

http://www.freebsdmall.com

06/2011 50

LET’S TALK What It Takes – Starting and Running an Open Source Certification Program, Part I

www.bsdmag.org 51

You want it to succeed, but you know it won’t
until more people use it and are truly good at it.
Suddenly, there’s a flash of lightning…

Hey, that’s it! I’ll create a certification for it. I’ll test people
and if they are good at my stuff, it will change everything!
you exclaim.

Sounds like a great idea, until you actually sit down
to do it, and you realize you know absolutely nothing
about creating a reliable certification program or
accurately measuring people’s knowledge, application
skill, or performance. You remember some of those
other certification tests you’ve taken- some of them truly
pathetic- and wonder if there is any way to do it right. After
all, if you’re going to put effort into it, you want it to be
an excellent certification program, just like your amazing
software.

In this three part series of articles, we’ll walk through
what it takes to get your certification program off the
ground. We’ll look at the real-world experiences of the
BSD Certification Group (BSDCG), how we started
with just such an idea, and how we grew it into a solid
certification program. We’ll look at People, Processes,
and Technology, and explain how important each
element is in getting a certification program up and
running. We’ll explain what works for us, the decisions
we’ve made, and the mistakes we’ve made. Hopefully,
your certification program will be up and running in no
time.

This article will focus on the People element- who
you’ll need, why you need them, and what they can do.
In the next article, we’ll focus on Processes- dealing
with the business side, managing your content, defining
and creating your certification test(s), and taking a look
at governance and accreditation. The final article in this

series will look at the Technology element- websites,
surveys, collaboration, test construction and delivery,
scoring, and metrics. We’ll wrap it up with a look at the
future of Open Source Certifications.

People
Every organization needs people to make it work. To build
a reputable certification program, you can’t do it all by
yourself. You need people with several kinds of skills-

SMEs
Subject Matter Experts. These are the people that are
knowledgeable in every aspect of your software system.
They understand the technical details. They can clearly
determine whether it’s working correctly and they know
how to fix it when it’s not. When you get around to writing
questions (called items in certification circles), these
folks can contribute by writing and editing items. They
can also help define the Domains of Knowledge of your
certification program. These are the core topics that apply
to understanding your system.

The BSDCG has a couple of dozen SMEs that
generously donate their time to help generate and
review items, and set expectations for the level of
expertise for the certification exams. This group is a
mixture of seasoned BSD users and younger folks
interested in all flavors of BSD- FreeBSD, NetBSD,
OpenBSD, DragonFlyBSD, PC-BSD, and a number
of others. Having all the BSD systems represented by
knowledgeable experts helps us keep our certification
well-rounded. It also presents a challenge to keep the
focus of the certification from drifting too heavily in one
BSD direction. We are always eager to welcome new
SMEs, whatever their favorite BSD may be.

What It Takes

So you’re all excited about your new software and its
amazing capabilities to change the world. You truly believe
that if only more people knew about it and were competent
at using it, the world (or at least the information technology
world) would be revolutionized.

Starting and Running an Open Source Certification
Program, Part I

06/2011 50

LET’S TALK What It Takes – Starting and Running an Open Source Certification Program, Part I

www.bsdmag.org 51

Media
Media savvy people such as journalists, bloggers, social
media mavens, publicists, and public relations people can
help you get the word out about your system and your
certification program special events such as publication of
your Exam Objectives documentation, translations, group
meetings, new exams, and other news.

The BSDCG has several people who have experience
in blogging and social media- setting up BSD groups
on Facebook, Google, and Linked In, and publishing
information on various blogs. But we lack experience in
getting attention from mainstream tech media, and this is
where a lot of industry buzz is generated and consumed.
One of our current goals is to improve our profile and the
visibility of BSD systems in the tech media.

Managers
Having people who can keep things on track, maintain
lists of things to do, and help find and apply resources are
crucial to getting a certification program up and running.
It may seem strange, but they don’t have to be technical
gurus. In fact, they don’t have to be knowledgeable
about your software system at all. Yet these people are
important because they provide the lubrication (some
would say sandpaper) to get things organized and keep
everything moving in the same direction.

Managing an Open Source project is different from
managing other business and commercial activities.
People will sign up or agree to get something done and
then not do it. They get too busy with work or family to
work on the project. In the business world you can compel
people to cooperate with schedules and deadlines. But
you can’t do that with Open Source project people. People
join the project because they want to help or contribute.
Sometimes they have to realize that family and their $DAY_
JOB comes first.

An Open Source project manager is a good
communicator. They try to keep information flowing
between all the various groups. They help find extra
resources to backfill someone who, for whatever reason,
can’t find the time to get their piece of the project done.

There aren’t any real managers in the BSDCG. There
are several people with management experience, and lots
of people who know how to run a project. But we don’t
have dedicated managers, mostly because everyone is
busy. It takes time to manage an Open Source project
well.

Advisory Board
An advisory board is a group of senior level IT people that
you contact to see if they are interested in being loosely

General Technical
These are the people that can help you set up and run
the various technology pieces that are crucial to your
certification program.

There are system administrators, network engineers,
website designers, and software developers. You’ll need
at least two servers (possibly many more) to host your
website, registration system, technical content, mailing
lists, etc.

The BSDCG uses several servers for our internal
processes such as our website, registration system,
mailing lists, wikis, etc. It takes a fair number of smart
technical people to help run all these pieces.

There is software to install and continually manage.
There are planned and unplanned outages for networks,
servers, and applications. Without help from our technical
team, the BSDCG would not be able to function at all.

Writers
The writers are those people that write the website,
wikis, FAQs, brochures, handouts, and other explanatory
material. If they have no access to the item bank (question
database) they can write training materials and study
guides for the certification. They can even write books
and articles for profit as long as there is a clear separation
of training and certification activities.

There are several writers within the BSDCG and a
couple of them have wanted to pursue opportunities
to publish training materials for profit. In order to
accommodate these requests, the BSDCG worked with
them to ensure that their training materials were based
solely on publicly available materials such as our Exam
Objectives documents.

This ensures that there is no conflict of interest with
creating the examination itself, and it also ensures that the
training materials they produce have no unfair advantage
over anyone else’s training materials.

There is a special category of writers that can be very
important- the translators. Having a team of translators
can be a big help to spread the word about your system
and your certification program.

The BSDCG has a translation team who has been
extremely helpful in getting our documents translated
into other languages. But keeping the translation teams
engaged can be tricky.

You have to deal with many people of different
backgrounds whose knowledge of English may be
marginal. Then you have the different time zones for
people from around the globe. It can be very challenging
to keep a translation team going. This is one area the
BSDCG needs more help.

06/2011 52

LET’S TALK

Once you have passionate, dedicated people who love
working on the certification program and contributing to its
success, you will be successful.

There is an interesting dilemma when you start an Open
Source certification project. The very word Open means
transparency and inclusion. It’s the ability to be involved
in any sort of capacity in the project.

As it turns out, there is a limit to openness in a
certification project. If the objective is to measure
knowledge in a structured way, the questions and
answers being asked on the exam can’t be truly open
and out there for anyone to see. A certification program
is one of the few Open Source projects that has to have
a Non-Disclosure Agreement (NDA) as a part of the
engagement process for those people that are going
to be working with the item bank. It’s an unfortunate
necessity, but one that most people, if they think about it,
will understand and accept.

An NDA is a legal document. You’ll want to get a lawyer
to look it over. We’ll talk more about the business and
legal elements of your certification program in the next
article.

For now, get that passion fired up and go find a bunch
of people that feel just the way you do about getting your
system and certification program going. And if you don’t
have a certification program going, come join the BSD
Certification Group. We’re waiting for you to help us
change the world!

associated with your system and certification effort. From
time to time, you’ll want advice on various topics such
as business direction, certification promotion, various
technical and legal issues, and other matters of general
interest. It’s to your advantage to select a diverse group
of informed, knowledgeable, and competent people.
They can help you steer your group through some rough
times. And be aware, every certification effort has rough
sailing. You’ll want to keep the advisory board up to date
at regular intervals.

As you contact them, they may be wary of getting
involved. You can put them at ease by explaining that
they are primarily a sounding board- not developers,
managers, or other hands-on workers. You value their
advice, not their active participation.

The BSDCG does have an advisory board of senior
Unix people. We’ve given them infrequent updates on
our progress, and we’ve gotten some feedback. But we
really should do a much better job of keeping them in
the loop.

Psychometrician
Last but not least is the psychometrician. The psycho-
what you say? The psychometrician is the person who
knows the science behind measuring knowledge and
performance. They have experience in setting up and
running testing and certification programs. Theirs is a
specialized knowledge of how to create certification exams
that are accurate, repeatable, and reliable indicators
of knowledge and performance competence. Usually
they are PhD’s in Education or Sociology, or a related
discipline. And note- they cost money. A psychometrician
is a specialized career professional, just like a doctor or
a lawyer. Don’t expect to find one who will donate their
services for free.

The BSDCG was very fortunate in landing Dr.
Sandra Dolan to be our psychometrician. Her previous
psychometric engagements included the design of
the Linux Professional Institute certification, and The
American Osteopathic Association certification. She
has helped our BSD Associate certification immensely.
Without Dr. Dolan, we would have little more than some
questions a few dozen people dreamed up in their heads.
Instead, we have a solid psychometric foundation for our
BSD Associate exam, and we are currently contracting
with her for help on our BSD Professional exam.

With all those people, there is still one ingredient
missing- passion. You have to be passionate about getting
your software system and your certification program up
and running. Communicating that passion and getting
others excited is a key element in getting it off the ground.

JIM BROWN
Jim Brown has worked in the computer industry with continuous
Unix involvement in development or administration since the
early 1980s. His experience includes applications, systems
and database programming, in a variety of languages. One of
the founders of the BSD Certi�cation Group, he is helping to
develop the BSD Professional certi�cation. He currently lives in
Northwest Arkansas, USA.

http://hakin9.org/en

06/201154

INTERVIEW

www.bsdmag.org

Could you introduce Semihalf to our readers?
We are an embedded systems company, with expertise in
both hardware design and software development. On the
hardware side we mostly work with higher-end system-
on-chip devices based on architectures like ARM, MIPS,
PowerPC. The software development is often related
to open source code and technologies, in particular the
BSD family of operating systems. We have experience
with embedded development for FreeBSD, but also work
on NetBSD as well as bootloaders like UEFI or U-Boot.
Besides this, we know and work with Linux, so it is possible
to have a broader view of various systems‘ strengths and
weaknesses when considering an embedded operating
system and applications for our clients. We are based
in Kraków, Poland, but we cooperate with international
customers.

While having a wide field of expertise, you put
noticeably more emphasis on BSD. Why?
We like BSD because of the mature, quality code base and
good licensing terms. We appreciate the scientific heritage
and technical excellence as one of the key objectives.
Since we share these views in our daily work, the BSD
route is simply a natural direction. Another important factor
is that people in the community are friendly and helpful. It
just feels right to take part in this undertaking.

You are contributing to the FreeBSD project.
Could you tell our readers what is your role?
I’m part of the FreeBSD committers team, which means I
work together with other developers from around the world

on improving and maintaining the system. Technically,
I can submit code to the central source repository and,
actually, much of the code developed at Semihalf was
contributed this way after peer reviews. Besides pure
development I also happen to mentor people on FreeBSD.
In the past years I was shepherding two Google Summer
of Code students on behalf of the project with embedded-
related tasks. Personally I like to talk about what we do
and whenever possible I’m trying to share this with a
wider audience at the BSD conferences like BSDCan or
AsiaBSDCon. Speaking of conferences, last year Semihalf
was co-organizing the meetBSD 2010 technical conference
in Kraków, which brought many BSD developers and users
together, and was a successful event.

Do you have any plans for organising more
conferences or partaking in any more this year?
This year we are not able to involve in co-organizing the
event directly, but in general we are willing to support the
conference and are looking forward to future editions.
It’s possible however, you’ll see our developers speak at
sister BSD conferences as we plan to submit papers and
talks about some of the work we’ve done.

Let’s get back to Semihalf. Could you tell us
something about your customers?
One group of our customers are vendors of the embedded
processors, for whom we provide platform-level software
i.e. bootloader and operating system. Code from such
developments can eventually be published for example in
the official FreeBSD repository.

Interview with

Rafał Jaworowski
Rafal Jaworowski is a co-founder of Semihalf, where he is
leading the operating systems department.
With over 12 years of experience in the embedded systems
field he has ported FreeBSD to various ARM and PowerPC
systems, designed and developed device drivers and
kernel infrastructure components, which are embedded in
commercial products and installations.
He contributes to the FreeBSD Project as a src committer. He
has earned a M.Sc. degree in Mathematics.

06/201154

INTERVIEW

www.bsdmag.org

What was the most difficult and challenging
implementation you’ve done so far? Could you
give us some details?
Among the most memorable projects for me personally
was developing FreeBSD support for an embedded
PowerPC family of chips (the so called Book-E
specification). This project’s challenge came from the fact
that at the time we started to work on this, there was no
FreeBSD support whatsoever for this kind of machine.
Since the Book-E is in some aspects so much different
from the traditional PowerPC (which was supported back
then), it is considered a separate architecture variant with
specific MMU approach and other low-level differences.
We therefore had to implement from scratch the low-level
virtual memory management layer (pmap) and then all
major peripheral drivers.

I have also completed a follow up project to this one,
which introduced SMP support for dual-core versions
of these chips. This also was kind of a fresh start so it
brought many surprises during development.

But these are just part of a bigger picture: our team
has accomplished a number of interesting projects, like
porting to new embedded ARM systems, developing a
complete NAND Flash framework (including a filesystem)
and similar.

Future plans for Semihalf?
Plans related to the BSD world include porting FreeBSD
and NetBSD to the latest and upcoming PowerPC
embedded processors. We are also working on better
support for ARMv6 and v7 which will cover for SMP
operation of FreeBSD on multicore ARM systems. Other
developments will include support for more contemporary
embedded platforms and system-on-chip devices. There
are going to be more projects, but these are some major
highlights, so stay tuned. Some details about our latest
development efforts can be found on the web page http://
www.semihalf.com.

What future do you see for BSD systems? In
general and in the embedded field?
There’s plenty of things still to be done in the embedded
BSD space, so from this perspective the future seems
exciting as we can only grow. However for this to happen
we should encourage more people to get involved and
work on the embedded development of BSD systems,
which I’m trying to do also through this interview.

http://www.semihalf.com
http://www.semihalf.com
http://bsdmag.org

�������������������������������������
��������������������������

���

���

��

����������������
����������������������������������

������������������������������������
��������������������������������

http://www.ixsystems.com/

	Cover

	Here it is!
	Contents
	Introduction to OpenSSL:
Command-line Tool
	BSDCan 2011
	Introducing
FreeNASTM 8.0
	A Puffy In The Corporate Aquarium Success story: OpenBSD as an Enterprise Desktop

	DragonFly News
	Installing FreeBSD with
PC-SYSINSTALL
	An introduction to GIS on
FreeBSD
	Exploring The Powers Of The Cloud Deploying Eyeos On BSD

	NanoBSD and ALIX
	Mutt On OS X Part III

	OpenBSD Networking
	OMAP3 Full Support is
Coming Soon in FreeBSD
	What It Takes
Starting and Running an Open Source Certification Program, Part I
	Interview with
Rafał Jaworowski

