
http://www.ixsystems.com/

http://www.ixsystems.com/

http://www.ixsystems.com/

12/20114

CONTENTS

Editor in Chief:
Patrycja Przybyłowicz

patrycja.przybylowicz@software.com.pl

Contributing:
Dru Lavigne, Kris Moore, Antione Jacoutot, Toby Richards,

Paul Ammann, Rob Sommerville, Michael Shirk,
Benedict Reuschling, Robert Fekete

Proofreaders:
Jeff Loupe, Tristan Karstens, Barry Grumbine, Sander Reiche,

Christopher J. Umina

Special Thanks:
Denise Ebery, Dru Lavigne

Art Director:
Ireneusz Pogroszewski

DTP:
Ireneusz Pogroszewski

Senior Consultant/Publisher:
Paweł Marciniak pawel@software.com.pl

CEO:
Ewa Dudzic

ewa.dudzic@software.com.pl

Production Director:
Andrzej Kuca

andrzej.kuca@software.com.pl

Executive Ad Consultant:
Ewa Dudzic

ewa.dudzic@software.com.pl

Advertising Sales:
Patrycja Przybyłowicz

patrycja.przybylowicz@software.com.pl

Publisher :
Software Press Sp. z o.o. SK

ul. Bokserska 1, 02-682 Warszawa
Poland

worldwide publishing
tel: 1 917 338 36 31
www.bsdmag.org

Software Press Sp z o.o. SK is looking for partners from all over
the world. If you are interested in cooperation with us, please

contact us via e-mail: editors@bsdmag.org

All trade marks presented in the magazine were used only for
informative purposes. All rights to trade marks presented in the

magazine are reserved by the companies which own them.

Mathematical formulas created by Design Science MathType™.

Dear Readers,
The nights are coming faster and becoming longer. It’s
getting colder and colder... Soon in some parts of the world
it will be snowing. Just for lazy Winter evenings we publish
for you the December issue of BSD Magazine. We hope that
you will �nd it a good read. Now, few words about what you
will �nd inside.

This issue should satisfy especially FreeBSD fans. This time
they will �nd a lot of interesting articles inside. In What’s New
Benedict Reuschling will describe you FreeBSD’s Participation
in Google Code-In. And at the end of the issue in section Let’s
Talk Dru Lavigne will tell you about FreeBSD Foundation
– a non-pro�t organization dedicated to supporting and
building the FreeBSD Project and community worldwide.
Since the end of the year is coming, we hope that these two
articles will encourage you to support or participate in the
future projects dedicated to FreeBSD.

The author of Rolling Your Own FreeBSD Kernel in
his article will lead you step by step how to compile a
custom kernel. He will also list you the advantages and
disadvantage of having your own kernel. The last article
dedicated to FreeBSD enthusiasts is Anatomy of a FreeBSD
Compromise by Rob Somerville. In November issue you had
an opportunity to read his last text from GIS series, now he
begins the new series dedicated to security for admins. If
you have any comments or expectations don’t hesitate to
write him or us and send the feedback!

The OpenBSD users won’t be bored as well. First,
in Developers Corner they will �nd out how to keep
con�guration �les shiny as new by using sysmerge(8). Than,
they will learn How To get a basic Cacti server running and
monitor OpenBSD server with Symon.

To whole BSD users we can recommend the Michael Shirk’s
article – Hardening BSD with Security Levels which covers the
con�guration of security levels via securelevel for OpenBSD,
FreeBSD, NetBSD and DragonFlyBSD. And Robert Fekete’s text
about Extracting Useful Information From Log Messages.

One last not mention yet is a great text by Kris Moore,
who shows how to setup the Mac for dual-booting, and
perform the installation. Short, entertaining and very
practical text about Installing PC-BSD on a Mac.

There is nothing more left than to wish you enjoy the
reading! Don’t forget that by sending your feedback you help
us to do a better job and get a content you want to read :)

Patrycja Przybyłowicz
& BSD Team

Contents

www.bsdmag.org 5

and how to monitor your OpenBSD server with Symon.
You will also find out more about new PHP changes in
OpenBSD 5.0.

Extracting Useful Information From Log
Messages
Robert Fekete

The syslog-ng application is a powerful and flexible
system logging and log message processing tool to help
the work of system administrators. This article highlights
some of its newer and lesser-known capabilities.

Security
Anatomy of a FreeBSD Compromise
(Part 1)
Rob Sommerville

While the BSD family is more secure than most, no server
or IT system is invulnerable to attack. In this article the
author will examine best practices to prevent disruption
and what to do when the worst does happen. This is the
first part of new series written by GIS series author. Read
and learn more about (in)security in BSD world.

Hardening BSD With Security Levels
Michael Shirk

By default, BSD servers are more secure then other
operating system installations but still require some
changes in order to be production ready. Security
levels are one of the tools that can be used in order to
maintain the state of the system when being deployed
in production. This article covers the configuration of
security levels via securelevel for OpenBSD, FreeBSD,
NetBSD and DragonFlyBSD.

Let’s Talk
FreeBSD Foundation Update
Dru Lavigne

The FreeBSD Foundation is a 501(c)(3) non-profit
organization dedicated to supporting and building the
FreeBSD Project and community worldwide. It represents the
FreeBSD Project in executing contracts, license agreements,
copyrights, trademarks, and other legal arrangements which
require a recognized legal entity. It also funds and manages
development projects, sponsors FreeBSD events and
Developer Summits, and provides travel grants to FreeBSD
developers who would otherwise be unable to attend
Developer Summits. This article summarizes the conferences
and projects that the Foundation funded in 2011. It concludes
with how you can assist the Foundation in its efforts.

What’s New
Google Code-In and FreeBSD’s
Participation
Benedict Reuschling

For the first time, the FreeBSD project is participating in
another program run by Google Inc. to encourage student
participation in open source projects – Google Code-In.
While being similar to Google Summer of Code, some
aspects are quite different. This article will explain the
program from a participating organizations point of view
and what it’s current progress looks like.

Developer’s Corner
Installing PC-BSD on a Mac
Kris Moore

Starting with PC-BSD 9.0-RC1, it is now possible to easily
install directly to a Mac or MacBook BootCamp partition.
In this article the author will show you how to setup the
Mac for dual-booting, and perform the installation.

Keeping Your Configuration Files Shiny
as New Using sysmerge(8)
Antione Jacoutot

In the past, updating configuration files would either require
a patch file which would update some of the files that would
usually not be modified by the admin, or one would have
to manually merge the changes between the old and new
versions... which was cumbersome. Having a tool that would
help the administrator update his configuration in a fast and
easy way didn’t exist at that time and it was the reason
sysmerge(8) was created. By reading this article you will find
out more about sysmerge(8) usage and best practices.

How To
Rolling Your Own FreeBSD Kernel
Paul Ammann

Compiling a custom kernel has its own advantages or
disadvantages. However, new users may find it difficult to
compile a FreeBSD kernel. When compiling a kernel, you
need to understand a few things other then just typing a
couple of commands. In this article, the author will cover
the nuts-and-bolts of compiling a FreeBSD kernel.

OpenBSD 5.0: PHP, Cacti, and Symon
Toby Richards

In October issue the author gave instructions on how to
create an OpenBSD-Nginx-MySQL-PHP (ONMP) server.
Now, you will learn how to get a basic Cacti server running

06

10

12

30

16 46

36

42

26

12/2011 6

WHAT’S NEW

www.bsdmag.org

While being similar to Google Summer of Code
(GSoC), which FreeBSD has been participating
in for a number of consecutive years, some

aspects are quite different. This article will explain the
program from a participating organizations point of view
and what it’s current progress looks like.

What Google Code-In is
Google Code-In is meant for pre-university students
between thirteen and seventeen years who want to gain
their first experiences contributing to an open source
project. The program officially opened for students
worldwide on November 21, 2011 and will run until
January 16, 2012. Despite of what the Code-In part of
the program’s title suggests, the tasks that students are
working on are not limited to writing code. Things like
documentation, quality assurance, research, training,
translation, user interface design or even outreach tasks
to promote the project are activities to get a foot in the door
of an open source project. Each project creates a number
of tasks from each category (if applicable) totalling at least
fourty tasks that the students can work on. More tasks will
be added later as more and more tasks get finished by the
students. Tasks usually have a description and a goal that
must be met (for example, a document was translated or
a bug was fixed) in order to mark the task as completed.
For each task, the participants receive points – one for

easy tasks, two for medium tasks and four for tasks rated
as hard. The participating organizations are tasked with
calibrating each task and to put at least one mentor behind
each task to help students with questions they might have
or general help getting started. Also, it’s the mentors who
decide whether a submitted task is considered finished
and students will receive points for it. After the contest
is finished, the ten students with the highest number of
points earned will win a trip to Google’s Mountain View,
California campus for themselves and a parent or legal
guardian. Unlike Google Summer of Code, there is no
monetary incentive for open source projects engaging in
Google Code-In. However, there are other benefits that
make it palatable to mentor these students.

Why Google Code-In Participation is Important
to FreeBSD
FreeBSD benefits in a number of ways from participating
in the program. First of all, we gain valuable experience
in the program itself (being the first time we ever took part
in it). Google Code-In is different from Google Summer
of Code in that it requires more active mentoring for the
young participants. The turnaround time for the tasks
which can be claimed and assigned to a single student
at any time is also higher, requiring a certain flexibility
on our part. Also, we cannot expect that the participants
know how to properly interact with other people in an

Google Code-In

For the first time, the FreeBSD project is participating in
another program run by Google Inc. to encourage student
participation in open source projects – Google Code-In
(often abbreviated to GCIN).

What you will learn…
• what the Google Code-In program is,
• what the bene�ts for open source projects as mentoring

organizations are,
• the current state of progress for tasks by the FreeBSD Project.

and FreeBSD’s participation

12/2011 6

WHAT’S NEW

www.bsdmag.org

open source project. Google warned prospective mentors
that students might use excessive capitalization in their
communications and other forms which are normally
considered inappropriate on the internet. However, such
behaviour has not surfaced yet for those who worked
on tasks that the FreeBSD project has put up. Instead,
the students we came into contact with were not that
different in their communication style from other members
of our community who post regularly on mailing-lists, the
FreeBSD forums or on IRC channels. Of course, finishing
as many tasks as possible from our list is one of the main
goals that we try to accomplish with our participation as
a mentoring organization. But besides that, we were also
interested to see how much prior experience the students
had with FreeBSD itself. Another bonus of participation
that we hope will benefit us would be that students might
continue to do work long after the Google Code-In contest
has finished. Even if some of them do not become active
committers, they had contact with our community and
will hopefully spread the word that this has been a nice
experience for them. And last but not least, the variety
of areas that the students could engage in other than
writing code (which nevertheless is a worthwhile thing to
do) attracts different kinds of people to the project who
would otherwise not consider a contribution. Imagine that
a student may have discovered early in life to have an
artistical talent. Illustrating certain aspects of the system
or creating artwork to promote the project is something
that may have an enormous impact on other people who
might then better understanding what the FreeBSD project
is all about. Reaching out to a broad range of people and
to make use of their skills is a good way to ensure growing
a community of users as well as contributors.

Preparations to Become a Mentoring
Organization
The primary preparations like registering FreeBSD as a
mentoring organization, creating wiki pages for tasks and
calling for mentors were done by Wojciech A. Koszek.
That’s when I first heard of the contest. The main goal for
being accepted as a mentoring organization was to put
up fourty tasks for students to work on during the time

Glossary
• GCIN – Abbrv. For Google Code-In, a contest run by

Google Inc. to encourage contributions to open source
projects.

• GSoC – Abbrv. For Google Summer of Code, another
contest run by Google Inc. to encourage contributions
to open source projects by offering students to work for
money during the summer on a software project.

http://www.bsdcertification.org/

12/2011 8

WHAT’S NEW

Google Code-In is being held. Being interested in creating,
updating and enhancing the FreeBSD documentation set
of documents, I started working through the open task list
that we put up in the FreeBSD wiki. Creating tasks took a
little longer than initially expected. Additional explanations
were necessary because people external to the project
are usually not familiar with the tools that we use (or even
the operating system itself) and might struggle with even
the basic tasks. A simple documentation task soon looked
like a huge amount of work due to the size of its task
description, but at the core, it contained all the required
information. Of course, tasks can be edited afterwards
and that proved to be very helpful to us. Especially when
it comes to the available time a student gets to work
on a task exclusively, we discovered that more time is
needed than a normal committer might require to do it.
After all fourty tasks were created (not all of them by
me) and many FreeBSD committers agreed to take up
the mentorship for some of them, we decided that we
need more ways to interact with students seeking help.
So we made use of the IRC channel #freebsd-soc that
we normally employ when Google Summer of Code is
running and set up email contact information to reach the
mentors with questions. We even created a VirtualBox
image with a basic FreeBSD system containing checkouts
of the documentation source trees so that students can
start with main objective of the tasks rather than spending
time with setting up a system for themselves.

What We’ve Learned so Far
While the contest is still running, a few early findings can
be gathered already that may help when this contest runs
next time and we participate again. Fears that students
needed parenting or do not know the basics of writing
properly formatted email or do now know basic IRC
etiquette have not come up thus far. Students were not
shy to ask when certain aspects of a task were not clear
to them or if they struggled with things they did not know.
Students who worked and finished a task are very likely
to pick a similar task from the same project. For example,
once someone knew how to write an article in the DocBook
SGML notation that FreeBSD uses, it is likely that another
article task is being claimed. Most of the students have
never come into contact with FreeBSD or a UNIX-like
operating system before. Only a few who might have had
prior interactions with the project could start right away on

the more easier tasks. Giving students enough time for a
task is also important as they might ask more questions
in between which takes away valuable time. When we
saw that a student is interested in finishing the task, we
generously extended the time available to let them finish
the task without additional agitation. For me personally it
was very rewarding to see how many committers rallied
to help mentor the tasks that I put up. This not only meant
that the tasks are still relevant for others, but also that they
want to spend some time helping out newcomers apart
from their usually high workloads in the FreeBSD project.
I hope that the students keep up the pace with finishing
these tasks (11 of 72 at the time of this writing) and that
they not just see the tasks as milestones towards the
contest goal, but actually as valuable work that helps the
FreeBSD project and its userbase immensely.

Summary
It has been (and still is) a good experience participating in
Google Code-In as a mentoring organization despite the
work associated with it. The benefits of getting additional
help in many areas that usually do not get that much
attention but are otherwise important is very rewarding.
I wish all participating students good luck in finishing
enough tasks and hope to see them join the projects as
contributing members when the contest is over. If you
have a good idea for a FreeBSD task, feel free to add it to
the FreeBSD wiki or contact one of the mentors.

BENEDICT REUSCHLING
Benedict Reuschling has been using FreeBSD since 5.2.1-
RELEASE. He was lurking quietly on the FreeBSD mailinglists
until a blog post in 2008 made him join the FreeBSD German
Documentation team. After having received his commit bit
for the FreeBSD project’s documentation set as well, he’s been
involved in many aspects of documentation around FreeBSD.
Having worked in the private sector at a number of companies
during his time as a student, he now enjoys teaching students
at the Department of Computer Science where he spent so much
time of his education. Learning and practicing the Tai Chi Yang
style is helping him switch his internal processor off during spare
times.

On the Web
• http://www.google-melange.com/gci/homepage/google/gci2011 – Google Code-In Homepage,
• http://wiki.freebsd.org/GoogleCodeIn/2011 – FreeBSD’s tasks for Google Code-In 2011.

http://www.google-melange.com/gci/homepage/google/gci2011
http://wiki.freebsd.org/GoogleCodeIn/2011

http://www.dotlike.net/

12/2011 10 www.bsdmag.org 11

To begin the process of configuring your Mac for
dual-booting, you must first ensure that you are on
an Intel-based Mac, running OS X 10.5 (Leopard)

or later. Next, click the search button in the top right
corner of the system and type boot. Locate and click on
the Boot Camp Assistant program. (It can also be found in
Applications › Utilities › Boot Camp Assistant).

After starting the Boot Camp program, click continue
and select Create or remove a windows partition.

Next you need to allocate some disk space for your
new PC-BSD partition. Drag the circle divider to create a
windows partition of the desired size. When finished click
the Partition button.

After the partitioning is finished, click the Quit & Install
Later button to exit the boot-camp utility.

With your partitioning finished, the next step is to insert
your PC-BSD DVD/CD and reboot your system. Press

and hold the C key to boot from the CD/DVD drive. Once
you boot into the PC-BSD installer, you can proceed with
a normal installation until you reach the disk setup screen.
On the disk screen, it is important to select the correct
Boot Camp partition to do the installation. On a Mac with
a single volume and the Boot Camp partition, this will
show up as ada0p3 – linux-data. If in doubt, confirm that
the partition sizes match what you just created in Boot
Camp. With that partition selected, you can simply click

Installing PC-BSD
on a Mac
Starting with PC-BSD 9.0-RC1, it is now possible to easily install
directly to a Mac or MacBook BootCamp partition. In this article we
will take a quick look at how to setup the Mac for dual-booting, and
perform the installation.

Figure 1. Starting BootCamp From OSX Figure 2. Creating a New BootCamp Partition

12/2011 10 www.bsdmag.org 11

Next to continue with the installation. After selecting the
rest of your installation options and finishing the PC-BSD
setup, you can click Finish to reboot the system. Before
the Apple logo shows up, press and hold the Option key
to bring up the Mac Startup Manager. From this screen
you can select the new BSD partition to boot into your
desktop.

If the Startup Manager does not see your BSD partition
or you don’t want to remember to hold the Option key
during startup to boot into PC-BSD, you may need to
install a custom boot manager such as rEFIt. rEFIt can
be freely downloaded from their website and installed on
your system replacing the default boot manager. Once
rEFIt is installed, at bootup time you will be presented
with icons to select the system volume you wish to load.
Choose the BSD volume to begin booting into the PC-
BSD desktop.

If you later need to remove the PC-BSD Boot Camp
partition and return the disk space to your OSX volume,
there are only a few steps to take. First you will need to

bring up the Disk Utility under Applications › Accessories
› Disk Utility. Locate the PC-BSD / Boot Camp partition,
and select the Erase tab. On this screen change the
Format option to MS-DOS (FAT) and click Erase.

Now re-run the Boot Camp Assistant program. It will
then walk you through the process of removing the
partition and restoring the disk space to your existing OS
X volume.

Installing PC-BSD on a Mac

KRIS MOORE
Kris Moore is the founder and lead developer of PC-BSD. He lives
with his wife and four children in East Tennessee (USA), and
enjoys building custom PC’s and gaming in his (limited) spare
time. kris@pcbsd.org

More Information on the Web
• PC-BSD Installation Guide: http://wiki.pcbsd.org/index.php/

Installing_PC-BSD
• rEFIt Homepage: http://re�t.sourceforge.net

Figure 3. Setting The Size For The Partition

Figure 4. BootCamp Success Screen

Figure 5. Erasing The BootCamp Partition

mailto:kris@pcbsd.org
http://wiki.pcbsd.org/index.php/Installing_PC-BSD
http://wiki.pcbsd.org/index.php/Installing_PC-BSD
http://refit.sourceforge.net

12/2011 12

Keeping Your Configuration Files Shiny As New Using Sysmerge(8)

www.bsdmag.org 13

Unlike most Linux distributions and similarly to other
BSD systems, OpenBSD is not built from a collection
of packages. Instead, it is bundled as a coherent

whole, providing a complete Operating System extracted
from a handful of tarballs. That makes it a very easy system
to upgrade (most of the time, it’s just a matter of extracting
the sets). However this works fine for binaries, libraries, man
pages... but one does not want to just extract the default
configuration components (i.e. etcXX.tgz and xetcXX.tgz) as
it would obviously overwrite any local change(s).

In the past, updating configuration files would
either require a patch file (provided on the OpenBSD
upgradeXX.html page) which would update some of the
files that would usually not be modified by the admin, or
one would have to manually merge the changes between
the old and new versions... which was cumbersome.

Having a tool that would help the administrator update
his configuration in a fast, easy and thorough way after
upgrading from one release to another didn’t exist at that
time and it was the reason sysmerge(8) was created.

Note that sysmerge(8) only deals with the base system
files, it does not touch any third parties files like the ones
coming from ports(7)/packages(7).

Past
When sysmerge(8) was introduced, several people where
using the mergemaster(8) package (which was ported

over from FreeBSD) as a tool to update files under /etc
and /var (some configuration files for chrooted daemons
like named(8) or httpd(8) are located under /var).

It worked quite well but had some drawbacks: it was
targeted at FreeBSD (obviously), had a huge amount of
options, was very big script and was not part of the base
system.

So it was decided not to use mergemaster(8) but rather
write a replacement that would somehow work in the
same way but better suits our needs and requirements.

sysmerge(8) was initially added during the 4.4 release
development (about 3.5 years ago).

At that time it was mostly a simplified mergemaster(8)
only able to diff files and present you with an sdiff(1)
interface when they mismatched.

Nowadays, we are still using some important parts from
mergemaster(8) like the compare and diff loops.

sysmerge(8) also took some inspiration from tools like
etcupdate from NetBSD or etc-update from Gentoo.

Present
At the time of this article, sysmerge(8) is exactly 714 lines
longs (mergemaster(8) is about the double). Both utilities
share most of the same features but mergemaster(8)
makes a lot of them optional using knobs while we prefer
sysmerge(8) to be as simple as possible without having to
deal with an insane amount of options (Listing 1).

Keeping Your
Configuration

“I’ve just upgraded to a new release... now what?”

Files Shiny As New Using sysmerge(8)

What you will learn…
• sysmerge(8) history and internals
• sysmerge(8) usage and best practices

What you should know…
• OpenBSD upgrade mechanism
• Bourne shell

12/2011 12

Keeping Your Configuration Files Shiny As New Using Sysmerge(8)

www.bsdmag.org 13

• /etc/myname – FQDN of the machine, no need to
overwrite this

• /var/db/locate.database – locate(1) DB, generated by
locate.updatedb(8)

• /var/db/sysmerge/{etc,src,xetc}sum – checksums created
and used by sysmerge(8)

• /var/games/tetris.scores – no need to overwrite high-
scores ;-)

• /var/mail/root – post-installation mail to root

Some files and/or directories can be added to this ignore
list. Adding an entry to the /etc/sysmerge.ignore file (one
per line) will make sysmerge(8) skip it from comparison
which may be handy on some setups (/etc/pf.conf could
be a candidate).

When the following files are installed and/or updated
by sysmerge(8), their corresponding utility is instantly
triggered so that values between the flat files and the DB
stay consistent:

• /dev/MAKEDEV – MAKEDEV(8)
• /etc/login.conf – cap_mkdb(1) (only when /etc/

login.conf.db already exists)
• /etc/mail/access, genericstable, mailertable, virtusertable

– makemap(8)
• /etc/mail/aliases – newaliases(8)
• /etc/master.passwd – pwd_mkdb(8)

Running in default mode
This is what people will want to run most of the time. In
this mode, sysmerge(8) does a lot of behind the scenes
actions to help update the system without the need of too
much interaction with the administrator:

• Files that have the same CVS Id will be skipped from
comparison (i.e. added to the ignore list).

• There is a special check for sendmail(8) configuration
files (i.e. dot.cf files) because they include their build
date and directory which mean they will always
be different than the one installed on the currently
running system; so sysmerge(8) will add them to the
ignore list unless they really differ.

Files Shiny As New Using sysmerge(8)

sysmerge(8) does all of its work under WRKDIR, which
default to /var/tmp/sysmerge.XXXXXXXXXX.

The new reference files are installed under TMPDIR/

temproot/ and a backup of all replaced files is stored under
TMPDIR/backups/.

A summary log file is available under WRKDIR/

sysmerge.log.
While all options are detailed in the sysmerge(8) manual,

let’s talk about some common usages. There are 3 ways
of running sysmerge(8): without any option (the default
mode), in batch mode (-b) or in full diff mode (-d). Although
the batch mode can be combined with the full diff one, it
wouldn’t make much sense as we will see below.

Comparison is made between the currently installed files
and what are called the reference ones (the (x)etcXX sets
or the OpenBSD source directory of the new release).

So, each of the modes will run against a defined set of
reference files.

• -s is used to specify the path to either the etcXX.tgz
set or the OpenBSD source tree (usually /usr/src)

• -x is used to specify the path to the xetcXX.tgz set

These switches are optional: sysmerge(8) will default to
use /usr/src if they are not set (i.e. it will run s̀ysmerge /

usr/src̀).
Sanity checks are performed to make sure that

ownerships and permissions of updated and/or newly
installed files and links match the reference ones.

At the end of any sysmerge(8) invocation, mtree(8) is
run to make sure no directories are missing and that they
all have correct permissions.

Note that due to the specific nature of the following files,
they will always be ignored from comparison:

• /etc/*.db – passwd(1) and login.conf(5) DB files
created from corresponding utilities

• /etc/mail/*.db – sendmail(8) DB files created from flat
text files by makemap(8)

• /etc/passwd – generated by pwd _ mkdb(8) from
master.passwd(5)

• /etc/motd – no point in touching this file

Listing 1. Comparison of sysmerge and mergemaster usage

Usage: mergemaster [-scrvhpCP] [-a|[-iFU]] [--run-updates=always|never]

 [-m /path] [-t /path] [-d] [-u N] [-w N] [-A arch] [-D /path]

usage: sysmerge [-bd] [-s [src | etcXX.tgz]] [-x xetcXX.tgz]

12/2011 14

Keeping Your Configuration Files Shiny As New Using Sysmerge(8)

www.bsdmag.org 15

• Missing files and links will be automatically installed.
• Existing files that differ from the new reference ones

will be automatically updated without interaction if one
the following conditions is met:
• only the CVS Id differs
• current file differs from the new one but is the

same as the old one [*]
• file is a binary

• Missing user(s) and/or group(s) will be added to the
system.

[*] this is done using checksums; currently installed files have
they checksums stored under /var/db/sysmerge/{etc,src,xetc}sum
and these are compared against the new reference ones under
WRKDIR; this idea originally came from mergemaster(8).

If an automatic decision cannot be made, sysmerge(8)
will present the admin with an sdiff(1) interface so that
manual merging can be done (sdiff(1) can also be
skipped for the administrator to manually merge files
later; this is true in all modes).

Running in batch mode
In this mode, sysmerge(8) will behave like in default
mode (unless -d is also specified) except that interactive
merging (i.e. sdiff(1)) will be skipped. An administrator can
then manually merge these files later, they can be found
under the TEMPROOT. This mode is particularly useful when
running unattended updates on lots of machines.

Running in full diff mode
In this mode, sysmerge(8) makes no automatic action and
is fully interactive. Missing files will not be installed without
explicit consent from the administrator and any differing
file will need to be merged interactively.

While most of the users would not need to do this,
running sysmerge(8) this way can be useful to make
the system configuration as close as a new installation
would.

Usage
sysmerge(8) is meant to be run after each upgrade of
the system; from release X.Y to release X.Z or from one
snapshot to the other.

It is very important to give it the corresponding reference
set according to the way the system was upgraded:

• upgrade was done by rebuilding from source › run
sysmerge(8) against /usr/src

• upgrade was done using sets (bsd.rd) › run
sysmerge(8) against (x)etcXX sets

e.g. after upgrading your system from OpenBSD 4.9 to
5.0, reboot the machine, get the (x)etc50.tgz sets from
your favorite mirror then:

$ sudo sysmerge -s /path/to/etc50.tgz -x /path/to/xetc50.tgz

Listing 2. Typical sysmerge output

sysmerge -s etc50.tgz -x xetc50.tgz

===> Populating temporary root under /var/tmp/

sysmerge.PLMRVMNTiT/temproot

===> Starting comparison

===> Updating /etc/changelist

===> Updating /etc/login.conf

===> Updating /etc/moduli

===> Updating /etc/netstart

===> Updating /etc/protocols

===> Updating /etc/rc

===> Updating /etc/rc.conf

===> Updating /etc/rc.d/amd

===> Updating /etc/rc.d/ftpd

===> Updating /etc/rc.d/identd

===> Updating /etc/rc.d/ldapd

===> Updating /etc/rc.d/mopd

===> Updating /etc/rc.d/ntpd

===> Updating /etc/rc.d/rarpd

===> Updating /etc/rc.d/rc.subr

===> Updating /etc/rc.d/smtpd

===> Updating /etc/rc.d/ypbind

===> Updating /etc/rc.d/ypldap

===> Updating /etc/rc.d/ypserv

===> Updating /etc/services

===> Updating /etc/ypldap.conf

===> Updating /etc/X11/app-defaults/XTerm

===> Updating /etc/X11/xdm/Xaccess

===> Updating /etc/X11/xdm/Xresources

===> Updating /etc/X11/xdm/Xsession

===> Updating /etc/X11/xdm/Xstartup

===> Updating /etc/X11/xdm/xdm-config

===> Comparison complete

===> Checking directory hierarchy permissions (running

mtree(8))

===> Output log available at /var/tmp/

sysmerge.PLMRVMNTiT/sysmerge.log

 *** WARNING: some new/updated file(s) may

require a reboot

12/2011 14

Keeping Your Configuration Files Shiny As New Using Sysmerge(8)

www.bsdmag.org 15

Of course one would only need to append xetc50.tgz if
the X(7) sets are installed on the machine.

It can also work against reference files hosted
remotely.

$ sudo sysmerge -s http://ftp.fr.openbsd.org/pub/

 OpenBSD/5.0/i386/etc50.tgz

Upgrade example
So now let’s see a typical real world example and let’s run
sysmerge(8) after we upgraded a machine from release
5.0 to 5.0-current. We will be using the etc50.tgz and
xetc50.tgz sets downloaded from the snapshots directory
of an OpenBSD mirror (Listing 2).

Pretty easy since no manual merging was needed :-)

Sometimes, like this is the case here, sysmerge(8) will
warn you that you should reboot. This will appears when
/dev/MAKEDEV and/or /etc/login.conf have been updated.
The reason is that running MAKEDEV(8) will reset some
TTY permissions which may lead to strange behavior on
a running system. When login.conf(5) is modified it is
usually easier to just reboot the machine to make sure all
processes get their new limits.

Now, let’s have a look at the log file (this file is very
handy when running in batch mode where console output
might not be available; Listing 3).

This is a summary log file that records which actions
where taken by sysmerge(8). It also gives you the location
of the backups directory; one can always make a mistake
and overwrite a file that wasn’t supposed to be.

From there, you are finished and are the owner of a
brand new and shinny configuration :-)

Future
While sysmerge(8) is now fully featured, development
hasn’t stopped. Several enhancements are under
considerations to make things even less interactive.

One particular area that is currently investigated is the
possibility of using a 3-way merge, using the old sets,
the new ones and the currently installed files. This would
allow to update locally modified files automatically but
triggers new challenges, as we want to make sure no local
modifications nor existing behavior of the corresponding
applications gets changed. There is no code at the
moment, barely some notes and ideas...

Another area of improvement that was committed then
disabled is to integrate sysmerge(8) directly into the
OpenBSD installer. That would allow the administrator to
merge his configuration files right after the binary upgrade,
saving an extra reboot of the machine.

This change was successfully tested but eventually got
reverted because of some display issues on a couple
of legacy architectures when using a serial console.
Hopefully this will be worked on soon and enabled again.

On and on I’m very happy with the current state of
sysmerge(8), it is a small yet very handy tool and most
of the old-timers that used to run their own upgrade script
finally came into using it.

Listing 3. Content of the sysmerge log �le

===> Automatically installed file(s)

/etc/changelist

/etc/login.conf

/etc/moduli

/etc/netstart

/etc/protocols

/etc/rc.conf

/etc/rc.d/amd

/etc/rc.d/ftpd

/etc/rc.d/identd

/etc/rc.d/ldapd

/etc/rc.d/mopd

/etc/rc.d/ntpd

/etc/rc.d/rarpd

/etc/rc.d/rc.subr

/etc/rc.d/smtpd

/etc/rc.d/ypbind

/etc/rc.d/ypldap

/etc/rc.d/ypserv

/etc/services

/etc/ypldap.conf

/etc/X11/app-defaults/XTerm

/etc/X11/xdm/Xaccess

/etc/X11/xdm/Xresources

/etc/X11/xdm/Xsession

/etc/X11/xdm/Xstartup

/etc/X11/xdm/xdm-config

===> Backup of replaced file(s) can be found under

/var/tmp/sysmerge.PLMRVMNTiT/backups

ANTOINE JACOUTOT
Antoine Jacoutot is an OpenBSD developer living in Paris,
France. He is responsible for more than 300 packages, wrote
the sysmerge(8) utility and was part the OpenBSD rc.d(8)
framework development. He is also a GNOME committer and
member of the GNOME foundation. He runs OpenBSD for pretty
much everything.

12/2011 16

HOW TO Rolling Your Own FreeBSD Kernel

www.bsdmag.org 17

When compiling a kernel, you need to understand
a few things other then just typing a couple of
commands. In this article, I cover the nuts-and-

bolts of compiling a FreeBSD kernel.

Why Configure the Kernel?
When the system is installed, it comes with a generic
kernel that’s designed to run on most any hardware. The
generic kernel includes many different device drivers and
option packages. Since the kernel only needs to run on
your particular system, it’s a good idea to reconfigure it to
get the modules you won’t be using and to turn off options
that don’t interest you.

Building a kernel tailored to the system is a good habit
to get into. Your well-tuned configuration, once attained,
can serve as a reference guide for the system’s hardware.
Although unused features and drivers might not interfere
directly with the operation of the system, they can still
consume memory.

Modern kernels are better than their predecessors at
flushing unwanted drivers from memory, but compiled-in
options will always be turned on.

Although reconfiguring the kernel for efficiency reasons
is less important than it used to be, a good case can still
be made for doing so.

Another reason to configure the kernel is to add support
for new types of devices (i.e., add new device drivers).

The driver code can’t just be mooshed onto the kernel
like a gob of Play-Doh; it has to be integrated into the
kernel’s data structures and tables. On some systems,
this procedure may require that you go back to the
configuration files for the kernel and add in the new device,
rebuilding the kernel from scratch. On other systems, you
may only need to run a program designed to make these
configuration changes for you.

Some systems include the concept of a loadable device
driver, in most cases implying that new code can be
loaded into the kernel while it is running. A good human
analogy might be having brain surgery while operating
heavy machinery.

Building a kernel is not difficult; it’s just difficult to fix
when you break it.

Building a FreeBSD Kernel
Although the examples in this article are specifically for
FreeBSD, configuration for NetBSD is similar. OpenBSD
has provided some valid arguments on why you should
or should not customize your kernel. Instead of listing
them here, please refer to: http://www.openbsd.org/faq/
faq5.html#Why.

BSD kernels each have a name that is used through the
configuration process. The kernel name can be anything
you like, but it should be descriptive of the system or
systems on which the kernel is to run. If the kernel is being

Rolling Your Own
FreeBSD Kernel
Compiling a custom kernel has its own advantages or
disadvantages. However, new users may find it difficult to
compile a FreeBSD kernel.

What you will learn…
• Why you would want to build your kernel.
• How to build a FreeBSD kernel.
• How to create a BSD con�guration �le.
• How to tune a FreeBSD kernel.
• How to add a FreeBSD device driver.
• Brief discussion on loadable kernel modules in FreeBSD.

What you should know…
• Basic knowledge of FreeBSD.

http://www.openbsd.org/faq/faq5.html#Why
http://www.openbsd.org/faq/faq5.html#Why

12/2011 16

HOW TO Rolling Your Own FreeBSD Kernel

www.bsdmag.org 17

Audit the System’s Hardware
Before you can configure a kernel, you need to know
what devices it must handle. Start by taking a hardware
inventory of your system. Make a list of all the devices
connected to the computer, including:

• Disks and CD-ROM drives, and their controllers
• Network interfaces
• Specialty hardware
• The keyboard and mouse

This hardware audit can be a grueling task in the PC
world. PC manufacturers often just give you a packaged
machine and don’t tell you what kind of hardware is
inside; an Ethernet card is not enough. There are
hundreds of different PC cards marketed under dozens
of names. Frequently, the only way to do the audit is to
open your machine and look at what you’ve got. If you
think know the name of the device driver, you can look
at the man page for that driver. Unfortunately, FreeBSD
provides little documentation of the exact devices that a
driver supports.

Remember to check what the generic kernel reports
about your hardware at boot time; its output can give you
hints as to which drivers you should keep in your kernel.
You can check the current kernel’s idea of your hardware

built for one particular machine, that machine’s hostname
makes a good kernel name.

To build a FreeBSD kernel, you first create a
configuration file that lists the parameters of the new
kernel. You then run the config command to build a kernel
compilation directory as specified in your config file. The
name you give the configuration file becomes the name of
the compilation directory and ultimately the kernel.

The files needed to build a BSD kernel reside in /usr/
src/sys, which is usually symbolically linked to /sys. In
the following discussion, I will use the uppercase name
SYS to refer to this directory, just to emphasize that it
doesn’t really matter where it’s located. If you cannot
find the kernel configuration directory for your machine,
consultant your distribution’s website.

Here is an ls -F of the SYS directory for FreeBSD:
Listing 1.

The i386 directory contains architecture-specific
modules: Listing 2.

Another important directory in the SYS area is SYS/arch/
conf, where the kernel configuration files are stored; each
file corresponds to one kernel. In this article I will assume
that you are using the Intel 386 architecture, although
FreeBSD also supports the additional architectures such
as amd64, ia64, powerpc, sparc64 to name a few. config
reads a configuration file from SYS/arch/conf and creates
the corresponding compilation directory in SYS/compile/
KERNEL_NAME.

For example, when the system is first installed, it comes
with a generic kernel named GENERIC. The default
kernel configuration file is SYS/i386/conf/GENERIC, so that
default compilation directory would be SYS/compile/GENERIC.

The rest of the directories in SYS contain various parts
of the kernel that are assembled to create the executable
image. The exact files and subdirectories vary widely
among BSD systems.

The Master Recipe for Building a Kernel
The following list details the eight steps involved in build a
kernel. We take up each of these steps in the subsequent
sections.

• Audit the system’s hardware.
• Create and edit the kernel’s configuration file in SYS/

i386/conf.
• Run the config program from the conf diretory.
• Run make depend in the compilation directory.
• Build the kernel with make.
• Archive the old kernel and install the new one.
• Test and debug the new kernel.
• Document the new kernel.

Listing 1. Listing of the SYS directory

ls -F

Makefile ddb/ libkern/ netnatm/ rpc/

amd64/ dev/ mips/ netncp/ security/

arm/ fs/ modules/ netsmb/ sparc64/

boot/ gdb/ net/ nfs/ sun4v/

bsm/ geom/ net80211/ nfsclient/ sys/

cam/ gnu/ netatalk/ nfsserver/ tools/

cddl/ i386/ netgraph/ nlm/ ufs/

compat/ ia64/ netinet/ opencrypto/ vm/

conf/ isa/ netinet6/ pc98/ x86/

contrib/ kern/ netipsec/ pci/ xdr/

crypto/ kgssapi/ netipx/ powerpc/ xen/

Listing 2. The i386 directory

ls -F i386

Makefile compile/ ibcs2/ linux/ xbox/

acpica/ conf/ include/ pci/ xen/

bios/ i386/ isa/ svr4/

12/2011 18

HOW TO Rolling Your Own FreeBSD Kernel

www.bsdmag.org 19

with the dmesg command. You can also use the SYS/i386/
conf/LINT file as an extra reference.

Create a Con�guration File in SYS/i386/conf
Once you know how you want your kernel configured,
you must put this information into a form that config can
understand. To do this, you create a configuration file in
SYS/i386/conf. The name can be any valid filename, but it
should be descriptive enough that a stranger to your SYS
directory can tell what each kernel is for.

Don’t create the configuration file from scratch. Instead,
copy the GENERIC configuration and delete the parts you
don’t want. If you get stuck on something related to the
configuration file and can’t figure it out from the material
here, refer to the documentation for config. The man
pages for individual device drivers are also a good source
of information and usually show any kernel config lines
you might need. For example, the man pages for de(4)
begins with

 SYNOPSIS

 device de

which is the exact line you need to put in the kernel
config file to include that device. (Of course, this method
is still a bit backward because you need to know the
name of the device driver before you can look up the
man page. man -k is your friend.)

The format of a kernel configuration file requires quite
a few pages to describe, so instead of interrupting our
overview of the kernel building process with a complete
discussion, I’ll defer the details until the next section.

Run con�g
You must cd to SYS/i386/conf before running config; it
expects to find the configuration file specified on the
command line in the current directory. Simple versions
of config take the name of the configuration file as their
only argument. Fancier versions support a number of
options. To set up the compilation directory for the kernel
described in SYS/i386/conf/EXAMPLE, we would use the
following commands:

 # cd SYS/i386/conf

 # config EXAMPLE

If the config command produces error messages, you
must go back and fix your configuration file before
continuing. If you get through config without any errors,
you can assume that your configuration was at least

syntactically valid and that the kernel compile can
proceed.

Run make depend
After config finishes, change your working directory to
the new kernel’s compilation directory (cd ../../compile/
EXAMPLE) and do an ls. You should see lots and lots of files.
Don’t worry about their contents; config knows what it’s
doing.

Now run make depend inside the compilation directory.
This command initializes the file dependency information
used by make. make depend may produce voluminous
output.

Build the Kernel
In the compilation directory, simply type make. You must
watch carefully for error messages during the compilation.
make will usually detect errors and abort the compilation,
but it always helps to be alert. For extra protection, use
the tee command to keep a record of everything that gets
sent to your screen.

 # make |& tee ERRS.LOG

The & behind the vertical bar ensures that both error
messages and status messages will be directed through
the pipe. Bourne shell users should use

 # make 2>&1 | tee ERRS.LOG

If an error occurs during compilation, you should first
suspect your configuration file. If you get messages
about missing files or undefined routines, you have
probably left something out of the config file. If you get
messages complaining about syntax errors, the fault
may be with your configuration file or with the system,
although the latter is not likely.

Install the New Kernel
Before you boot a new kernel, make sure you can recover
your system if the new kernel doesn’t work. Never replace
the old kernel directly with a new one, because you will then
have nothing to boot from in the event of a catastrophe.
Traditionally, kernels have been called /vmunix, but every
OS seems to call them something different these days.
Under FreeBSD, the kernel is /kernel.

You should back your old kernel by moving /kernel to
/kernel.works. All systems provide some way to keep an
old kernel bootable while you test a new one. You could
do this with boot loaders, but that’s a topic for a different
article.

12/2011 18

HOW TO Rolling Your Own FreeBSD Kernel

www.bsdmag.org 19

/kernel can be a hard link to some other filename, so you
can just make a link to your new kernel rather than copying
it. If the kernel is not called /kernel and you don’t make this
link, the boot loader will have difficulty finding it.

Test the New Kernel
If the system boots successfully, you are probably in good
shape. However, you should try a few checks just to make
sure. Run ls on at least one directory in each filesystem.
Success indicates that the filesystem is functioning
correctly. ping another machine on your network to see if
your network device is working properly.

Document the New Kernel
Before washing your hands of this whole sordid kernel
business, go back to your original SYS/i386/conf/KERNEL_
NAME file and put in copious comments so that you will
understand what you have done when you come back to
read it six months or a year later.

If you have lots of free space, you can preserve the
SYS/compile/KERNEL_NAME directory to speed up subsequent
alterations. If you’re tight on space, just delete it;
everything it contains can be regenerated with config.

Creating a BSD Configuration File
Creating the configuration file (under SYS/i386/conf) is
the hardest part of building a BSD kernel; the rest of the
process quite mechanical.

A configuration file is a list of control phrases, one per
line. Any line beginning with a tab character is considered

a continuation of the previous line. Anything between
a pound sign (#) and the end of a line is considered a
comment, and blank lines are ignored. Keywords must
be separated by whitespace, but except for this and
the special meaning of tabs as continuation characters,
spaces and tabs are ignored.

Integers in the configuration file can be entered in
hexadecimal, octal, or decimal form. Octal numbers are
identified by a leading zero, and hexadecimal numbers by
a leading 0x. Strings must be double quoted if they contain
numbers used as text.

A control phrase begins with a single keyword that
indicates how the remainder of the line is to be interpreted.
The rest of the line provides the keyword’s arguments.
Some keywords can accept a list of arguments separated
by spaces or commas, but it’s wise to use only one
argument per line. Most keywords that can accept multiple
arguments can also have arbitrarily many control lines.

The order in which control phrases appear is usually not
important; Table 1 shows the traditional order: Table 1.

The maxusers Keyword
The maxusers keyword sets the size of several important
system tables. As its name suggests, the argument
to maxusers is roughly the maximum number of
simultaneous users that the system is expected to support
(though most versions of UNIX don’t actually enforce a
limit on the number of users per se). If you want to tune
this value yourself, you should increase it by 1 for each
expected simultaneous user and, if you are configuring
the kernel for an NFS server, by 1 for each client machine.
Add 8 for each frame buffer on which a window system
can be run.

The maxusers number affects the values of several
other kernel parameters, such as the maximum number
of processes, the number of file table entries, and the
number of buffers for terminal I/O. The most important
of these is the maximum number of processes on the
system. Here’s the formula:

 Maximum processes = 20 + 16 * maxusers

This maximum process count includes the 18 or so
processes that start when the system is booted.

The options Keyword
An options directive defines variables for the C
preprocessor during compilation of the kernel. There are
two different forms of the options statement.

In the first form, tokens are defined but given no
particular value. Such tokens specify whether an option

Table 1. Keywords used in BSD con�guration �les

Keyword Function
machine Sets the machine type

cpu Sets the CPU type

ident Sets the name of the kernel

maxusers Sets the kernel’s table sizes

options Sets various compile-time
options

con�g Assigns the root and swap
areas

controller Declares a disk or tape
controller

disk Declares a disk connected to a
controller

tape Declares a tape connected to a
controller

device Declares devices without
controllers

pseudo-device Declares pseudo-devices

12/2011 20

HOW TO Rolling Your Own FreeBSD Kernel

www.bsdmag.org 21

is on or off using the preprocessor directives #ifdef and
#ifndef. When a token is supplied as an argument to
an options statement, the corresponding preprocessor
symbol is defined and the option is enabled. For example,
the phrase to include NFS in the kernel is

 options NFS

Note that with FreeBSD, any string in the config file
containing both letters and numbers needs to be quoted.
For example the ISO-9660 filesystem used on CD-ROM
is enabled with the following line:

 options “CD9660”

The second form of options statement not only defines
a symbol but also gives it a specific value. The kernel
code uses the symbol as if it were a constant, and the
C preprocessors makes an appropriate substitution
wherever the symbol appears. This type of symbol is
declared with the syntax:

 options symbol=“value”

For example, to modify the value of the MAXDSIZ option,
which sets the maximum amount of virtual memory that
can be allocated to the data segment of a single process,
you would use a line such as:

 options MAXDSIZ=“(64*1024*1024)”

This example sets the value to 64 megabytes.
The most common options are listed below. None

of these options take a value. See your vendor’s
documentation for a complete list.

• INET – This option includes networking support.
Networking has become so persuasive that a lot of
software is likely to break if you don’t include it; it’s
an option in name only. When you enable INET, you
should also include the pseudo-device loop. The INET
option includes only software-side networking support.
Network hardware is declared later in the config file.

• FFS – This option allows local disks to be attached to
the machine. It’s omitted only when an extremely lean
kernel for a diskless client or an embedded device is
set up.

• NFS – This option includes NFS support in the kernel.
It’s required for both NFS clients and servers.

• GATEWAY – This option is for use on machines that
have more than one network interface and are

intended to perform Internet routing and forwarding
functions. This option currently has only minor
ramifications: it increases the size of some kernel
data structures to cope with the expected load and
provides for special network behavior if one of the
interfaces goes down.

The con�g Keyword
The config keyword specifies the location of the root
partition on the system’s disks.

The root partition is the topmost component of the
filesystem. It contains the directory root (/) and several
other important files and subdirectories. Information about
how to mount filesystems is kept in the /etc/fstab file, but
the kernel can’t see this file until the root partition has
been mounted.

To bootstrap the filesystem, information about the
partition that holds the root must either be compiled into
the kernel or, on some systems, passed to the kernel by
the bootstrap loader. The situation for swapping is not as
dire, since it’s unlikely that any swapping will occur until
the /etc/rc* scripts run the swapon command.

A config line has the form

 config kernel_name root on partition

The kernel _ name parameters sets the filename under
which the compiled kernel will be stored. FreeBSD
kernels are named kernel; alternates are often named
to identify the disk they use for the root partition (e.g.,
dakernel).

The partition parameter tells which partition the root
filesystem is located on. The partition is typically wd0 for
IDE systems and da0 for SCSI systems.

Here’s a complete example:

 config kernel root on wd0

The ability to build variant kernels is useful for disaster
planning. An alternate root partition equipped with its
own kernel can be of great help when your main root
partition is damaged. If the alternate root is on the same
disk drive or controller as the one that got trashed,
be sure to verify the stability of the hardware before
rebooting. Otherwise, you run the risk of destroying the
alternate root, too.

On some systems, a CD-ROM or USB drive controls
the boot procedures. The CD-ROM or USB drive knows
the location of the kernel and control its invocation. If you
maintain an alternate root partition, you may have to build
a new boot CD-ROM or USB drive that uses it.

12/2011 20

HOW TO Rolling Your Own FreeBSD Kernel

www.bsdmag.org 21

Hardware Devices
The syntax for declaring devices is confusing, and building
the basic entries required to make the system run vary
from machine to machine. Section 4 of the BSD manuals
covers devices. Most man pages for device drivers list an
example config line you can include in the kernel.

Take the following instructions with a grain of salt.
I discuss the general syntax, but since I expect that
you will mostly be paring down your system’s generic
configuration, I don’t talk about how to write your own
device specifications from scratch.

The basic form of a declaration is:

 device-type device-name at connection-info port address

[device-class] irq interrupt

Not all clauses are applicable to all devices.
device-type is the type of device you are declaring. A few

types of devices, such as controller and disk, have special
keywords. Others use the generic keyword device.

device-name is the standard name of the device (or
more accurately, the name of the device driver), plus the
logical unit number. For example, the name for the first
IDE controller is wdc0. As you wade through the generic
configuration, you can look up each device in section
4 of the manuals to find out what it is and whether it
applies to you. Note that the logical unit number has no
relationship to any hardware-specified selection number
of the device.

The connection-info for a device tells the kernel where
to find the device and what kind of device it is. For disk
and tape drives, this connection info is usually the name
of a controller. For controllers and devices, it’s the name
of a bus or bus controller. For example, the following
lines define the system’s ISA bus, an IDE controller that’s
attached to it, and an IDE disk that’s attached to the IDE
controller:

 controller isa0

 controller wdc0 at isa? port “IO_WD1” bio irq 14

 controller wd0 at wdc0 drive 0

It is usually sufficient to state that a device is connected
to a particular type of controller without specifying which
one. For example, the location of the wdc0 IDE controller
is indicated above not as isa0 or isa1, but as the more
generic isa?.

The address parameter, the argument to the port

keyword, represents the location of the device’s
command and status registers in the address space of
the bus or backplane to which it is connected. Controllers

and devices connected directly to a bus often have this
parameter filled in. Each kind of device has a certain
number of address locations that it occupies in the bus’s
address space. The values only need to be specified
for ISA or EISA devices; PCI drivers can dynamically
determine the address range a device is using.

Set the interrupt to the interrupt request (IRQ) the device
has been configured to use. This parameter only needs to
be specified for ISA and EISA devices. PCI drivers can
dynamically determine the interrupt a device is using.

For some device drivers, you must specify a device-
class. This parameter is mainly used for network devices
and some controllers. To see if a specific device needs a
device class, refer to its man page.

Here’s the config line for an ISA NE200 network card
that uses most of these options:

 device ed0 at isa? port 0x360 net irq 10

This line says to locate the device ed0 on the ISA bus at
I/O address 0x360. It uses interrupt 10. It’s more typical
that some keywords can be left out. Here’s another
Ethernet card, this time on the PCI bus:

 device de0

Thanks to the wonders of PCI, we are not required to
specify all the gory details.

The most effective way to organize your declarations
is to pair related devices. If you have a controller, put
the devices attached to it nearby. For example, if you
have an IDE controller, put your IDE disk and CD-ROM
declarations right after it. That way it’s easier to visualize
the dependencies.

The pseudo-device Keyboard
Theoretically, pseudo-device drivers are programs that
act like device drivers but don’t have any real hardware
to back them up. I say theoretically because some kernel
options that masquerade as pseudo-devices do not act
like device drivers at all, at least from the user’s point of
view. The syntax for a pseudo-device line is

 pseudo-device device-name number-of-instances

device-name is the name of the pseudo-device and
number-of-instances is an optional integer telling how
many of the imaginary devices the driver should pretend
are present. Many drivers do not use the instance count.

There are only a few pseudo-devices, but most of them
are obligatory for correct operation of the system. Some

12/2011 22

HOW TO Rolling Your Own FreeBSD Kernel

www.bsdmag.org 23

systems have a number of nonstandard pseudo-devices
that support windowing systems, extra keyboards, or
auxiliary displays. Consult the manuals of your system
to learn how to deal with these, or just include all the
pseudo-devices from your generic configuration file for a
more festive atmosphere.

Some common pseudo-device are:

• pty – PTYs are pseudo-terminals. They mimic
terminals, but instead of having an actual terminal
on one end, they are connected to a UNIX process.
PTYs are used heavily by programs such as ssh,
xterm, telnet, and rlogin, and they are also used by a
few standard utilities such as shell scripts to do input
processing.

• loop – The loop driver simulates an interface to a
network that contains only the local host. It allows
stand-alone machines to use network software, and
it also provides a standard way for a machine to
address packets to itself. It is required if you specify
the INET option.

A Sample FreeBSD Con�guration File
Let’s look at a configuration file for a simple kernel which
we’ll call EXAMPLE:

 machine “i386”

 cpu “I386_CPU”

 cpu “I486_CPU”

 cpu “I586_CPU”

 cpu “I686_CPU”

 ident EXAMPLE

 maxusers 32

The first few lines specify that we are building a
kernel for Intel PCs and that the kernel should
support all the different CPU types specified. This
section also identifies the configuration with the name
EXAMPLE. The maxusers line sets the kernel tables
up for approximately 32 simultaneous users and 532
simultaneous processes.

 . . .

 options INET # Intenet: TCP/IP

 options “CD9660” # ISO 9660 CD-ROM filesystem

 options FFS # (FFS) Local filesystem

 options NFS # Network filesystem

 . . .

This is just a snippet from the options section of the
configuration file. My sample kernel is configured with

support for Internet (IP) networking, the ISO-9660
filesystem (used most commonly on CD-ROMs), local
filesystems, and NFS.

 config kernel root on wd0

The default root device is the first IDE hard disk.

 controller isa0

 controller pnp0

 controller eisa0

 controller pci0

These lines declare the various buses supported by
system: ISA, EISA, and PCI. The second line declares
Plug and Pray support for ISA devices (pnp0) (Listing 3).

This section declares all items needed to get a console
on your machine. It declares the keyboard and its
controller, the mouse, the display card, and the console
itself (Listing 4).

Listing 3. Declaring the various buses supported by the system

 controller atkbdc0 at isa? port IO_KBD tty

 device atkbd0 at isa? tty irq 1

 device psm0 at isa? tty irq 12

 device vga0 at isa? port ? conflicts

 # splash screen/screen saver

 pseudo-device splash

 # syscons is the default console driver, resembling

a SCO console

 device sc0 at isa? Tty

Listing 4. Declaring all items needed to get a console on your
machine

 # Floppy devices

 controller fdc0 at isa? port "IO_FD1" bio

irq 6 drq 2

 disk fd0 at fdc0 drive 0

 disk fd1 at fdc0 drive 1

 # IDE controller and disks

 controller wdc0 at isa? port "IO_WD1" bio

irq 14

 disk wd0 at wdc0 drive 0

 disk wd1 at wdc0 drive 1

 controller wdc1 at isa? port "IO_WD2" bio irq 15

 disk wd2 at wdc1 drive 0

 disk wd3 at wdc1 drive 1

12/2011 22

HOW TO Rolling Your Own FreeBSD Kernel

www.bsdmag.org 23

Here I declare the controllers and disks for my example
system: a floppy controller, two floppy drives (even though
only one is used, declaring them both doesn’t hurt), and
two IDE controllers with corresponding disks (Listing 5).

Under FreeBSD, I need to include these special options
to enable IDE devices. Although IDE can be configured
as a loadable kernel module (the LKM referred to in the
comment), it must be statically configured if you’re using
an IDE disk as your root partition. Otherwise, the system
cannot recognize your root disk at boot time (Listing 6).

Of these pseudo-devices, only loop is mandatory. In
general, you should retain all the pseudo-devices in the
GENERIC configuration. Obviously, you need the ether

pseudo-device to use Ethernet devices. You need the bpf
pseudo-device to run tcpdump and DHCP clients, so keep it.

You may want to leave out bpf support to prevent
people from sniffing the network. However, if you omit
bpf, you won’t be able to legitimately snoop to diagnose
problems.

Tuning the FreeBSD Kernel
The GENERIC kernel is not tuned for high performance,
as you will notice especially if you are building a high-
volume web server. Here are some suggestions for
building a better FreeBSD kernel.

To some extent, you can dynamically tune the FreeBSD
kernel with the sysctl command, which provides a user-level
interface to many of the kernel’s internal data structures.
sysctl lets you dynamically change selected kernel
parameters; it’s a powerful (and dangerous) command.

sysctl -a lists the kernel variables you can look at and
possibly change. Almost all the parameters in Table 2 can
be changed dynamically. Documentation on what each
variable does is typically meager, although the variable
names usually give a hint. Be careful when tuning your
kernel with sysctl because you can easily break things.

The changes that sysctl makes to kernel variables
are not remembered across reboots. A useful paradigm
is to first test changes by using sysctl, then make them
permanent by changing the kernel config files and
recompiling the kernel. This procedure has the advantage
of safety, since you can simply reboot to reset the system
no matter how much you’ve screwed things up.

Table 2 lists the most commonly tuned sysctl variables,
their default values, and their meanings.

Note that in the default configuration, a single user can
consume all but one of the system’s process slots. Even
if only one person will actually use the system, these
defaults create a potential problem because no headroom
is reserved for starting system processes. You should
make the gap between maxproc and maxprocperuid much
larger than the default.

Below, I describe some simple parameters you might
change in your kernel config to get better performance
out of the GENERIC kernel. These tweaks are designed
specifically for use on a web server, although they should
increase performance for most network servers.

 maxusers 256

The maxusers keyword adjusts many other variables in
the kernel, such as the maximum number of processes,
the maximum number of processes per user, the system-
wide limit on open files, the per-process limit on open
files, and the maximum number of network buffers. Be
generous when configuring a server.

 options NMBCLUSTERS=17536

Here, I set the number of network buffers to a higher
value.

Listing 5. Declaring controllers and disks

 options ATAPI # Enable ATAPI support for

IDE bus

 options ATAPI_STATIC # Don’t do it as an LKM

 device acd0 # IDE CD-ROM

Listing 6. Retain all pseudo-devices in the GENERIC
con�guration

 pseudo-device loop # Network loopback

 pseudo-device ether # Ethernet support

 pseudo-device bpf 4 # Berkeley packet filter

Table 2. Interesting FreeBSD kernel variables accessible through sysctl

Variable Default Meaning
kern.max�les 3912 Maximum # of open �les

kern.maxproc 1956 Maximum # of processes

kern.max�lesperproc 3520 Maximum # of open �les
per process

kern.maxprocperuid 1760 Maximum # of processes
per uid

kern.ipc.nmbclusters 8768 Maximum # network
buffers

kern.ipc.maxsockets 8768 Maximum # of available
sockets

kern.ipc.somaxconn 128 Maximum # of
simultaneous unaccepted
sockets

12/2011 24

HOW TO

 options CHILD_MAX=1024

This option sets the maximum number of child processes
on the system. The number should be high on a network
server. In general, network server daemons create a
child process for each incoming request.

 options OPEN_MAX=1024

This option sets the maximum number of file descriptors
on the system. This number should generally be the
same as CHILD _ MAX, since each incoming network
connection gets assigned its own file descriptor. Given
the way that network servers generally work, if you have
fewer file descriptors than child processes, you will be
limited by the number of file descriptors; the converse is
also true.

Adding a FreeBSD Device Driver
Adding a completely new device driver to a FreeBSD
machine involves adding it to a couple of configuration
files and editing the kernel source code to include
references to the driver’s routine. This procedure is not
for the faint of heart!

I will use a FreeBSD system as my example, but all
BSD systems (including NetBSD and OpenBSD) are
essentially similar, except that the locations of files may
differ. I will add a snarf device (a pseudo-device) for my
example.

First, I have to copy my source files to the proper
location:

 # cp ~ammann/snarf.c /sys/pci/snarf.c

Since my device is a PCI device, I’ll put the source files
in SYS/pci with all the other PCI drivers. If your device
doesn’t fall into an existing category, you’ll have to put
it in a new directory and edit SYS/i386/conf/files.i386. As
long as the driver belongs to an existing category, it will
automatically be compiled and linked into the kernel.

Next, I add the device to the kernel configuration file. I
put the following entry in my EXAMPLE configuration:

 device snf0 # Snarf, my fake network device.

This line instructs the config program to include the files
for the driver in the kernel. Since network devices do not
have major and minor numbers, we do not need to tell
the kernel what the numbers are. If I was adding a block
device or a character device, I would have to tell the
kernel which major and minor numbers to use.

To tell the kernel which major number to use, edit SYS/
i386/conf/majors.i386 and add the appropriate entry. What
the appropriate entry means varies from device to device.
Refer to the driver’s documentation.

The next steps include:

• Running config and building a new kernel
• Copying the old kernel aside and installing the new

kernel
• Rebooting and testing the new kernel

These steps were explained earlier in this article. Finally,
you may need to create device files and test the device
itself.

Device Files
By convention, device files are kept in the /dev directory.
Large systems, especially those with networking and
pseudo-terminals, may support hundreds of devices.

Device files are created with the mknod command, which
has the syntax

 mknod filename type major minor

where filename is the device file to be created, type is
c for character device or b for a block device, and major
and minor are the major and minor device numbers. If
you are creating a device file that refers to a driver that’s
already present in your kernel, check the man page for
the driver to find the appropriate major and minor device
numbers (in section 4 for FreeBSD).

Loadable Kernel Modules in FreeBSD
The FreeBSD modload, modstat, and modunload
commands manipulate kernel modules. You will no doubt
be shocked to discover that these commands load a
module, display module status, and unload a module,
respectively. Each utility performs ioctls on /dev/lkm.

By default FreeBSD’s kernel modules live in /modules. If
something can be added as a kernel module, it will found
there. Any of the modules listed in /modules can be inserted
using the aforementioned utilities.

PAUL AMMANN
Paul Ammann lives in Connecticut and recently converted to
FreeBSD.

References
Chapter 9 of the FreeBSD Handbook.
http://www.freebsd.org/doc/handbook/kernelcon�g.html

ReferencesChapter 9 of the FreeBSD Handbook.http://www.freebsd.org/doc/handbook/kernelconfig.html

http://www.freebsdmall.com/

12/2011 26

HOW TO

www.bsdmag.org

The reason is that OpenBSD 5.0 changes some of
the names and locations of PHP files. OpenBSD
5.0 supplies packages for both PHP 5.2 and

5.3. From package names to directories to binaries,
everything PHP is now ...php-5.2... or ...php-5.3....
Also, the configuration files are moved from /var/www/conf
to /etc. Here are some highlights (substitute 5.2 for 5.3 if
you’re using that version – I’m using 5.3):

/usr/local/bin/php is now /usr/local/bin/php-5.3

/usr/local/bin/php-fastcgi is now /usr/local/bin/php-fastcgi-5.3

/var/www/conf/php.ini is now /etc/php-5.3.ini

Now that OpenBSD supports both PHP 5.2 and 5.3, we
typically want to install packages in interactive mode
(otherwise, pkg _ add will tell us that the names of PHP
related packages are ambiguous).

Here is the new way to invoke php-fastcgi-5.3 in your
/etc/rc.local file: Listing 1.

Lastly, OpenBSD 5.0 offers the Nginx 1.0.8 package. If
you’re trying to follow my ONMP article from October, then
you can scrap all the stuff about compiling Nginx from
source. The new Nginx HTML root is at /var/nginx/html/,
and the new Nginx config files are at /etc/nginx/.

For more information about building an ONMP 5.0 server,
you are free to look at my notes here: http://toby.org.org/
wordpress/index.php/getting-started/openbsd-5-0/.

Let’s install Cacti, which can show graphs from just
about any data source. You can graph weather metrics,
stocks, or even the number of times I Love Lucy reruns
are shown on any given day. You just need a data
source.

First we need SNMP, RRDTool, and PHP-GD:

pkg_add -i net-snmp php-snmp rrdtool php-gd

cp /etc/php-5.3.sample/snmp.ini /etc/php-5.3

cp /etc/php-5.3.sample/gd.ini /etc/php-5.3

Now add this to your /etc/rc.local so that we can get
SNMP data from our server (for seeing CPU utilization,
RAM, free disk space, etc.):

if [-x /usr/local/sbin/snmpd]; then

 /etc/rc.d/snmpd start

fi

Now you can follow the directions on http://cacti.net to
install Cacti. There’s no OpenBSD package, so use the
tarball on the web site. I’m not going to rewrite the Cacti
documentation here; however, you will find corrections to
OpenBSD specific discrepancies below.

First, the documentation doesn’t tell you where to put
the files. I assume that you know enough to put them into
your HTML root. For example:

OpenBSD 5.0:
Back in October, I gave instructions on how to create an
OpenBSD-Nginx-MySQL-PHP (ONMP) server. Upgrading
from OpenBSD 4.9 to OpenBSD 5.0 was difficult.

What you will learn…
• New PHP changes in OpenBSD 5.0.
• How to get a basic Cacti server running.
• How to monitor your OpenBSD server with Symon.

What you should know…
• The OpenBSD command line.
• The differences between Apache & Nginx.
• A basic understanding of what SNMP is.

PHP, Cacti, and Symon

http://toby.org.org/wordpress/index.php/getting-started/openbsd-5-0/
http://toby.org.org/wordpress/index.php/getting-started/openbsd-5-0/
http://cacti.net

12/2011 26

HOW TO

www.bsdmag.org

tar xvfz cacti-0.8.7h.tar.gz

mv cacti-0.8.7h /var/nginx/html/cacti

The Cacti documents say to add this to your crontab, but
it is…

WRONG:
*/5 * * * * cactiuser php /var/nginx/html/cacti/poller.php

> /dev/null 2>&1

RIGHT:
*/5 * * * * /usr/sbin/chroot -u cactiuser / /usr/local/

bin/php-5.3 \

/var/nginx/html/cacti/poller.php > /dev/null 2>&1

After installing Cacti, there are two files that need
tweaking. Cacti tries to modify PHP’s memory settings.
OpenBSD uses Suhosin to harden PHP. Suhosin
doesn’t allow this. It may not be a big deal under
normal circumstances, but if you’ve also installed a host
intrusion prevention system such as OSSEC, then you’re
likely to get locked out of your own server. Comment out
the following line in both /var/nginx/html/cacti/cmd.php and
/var/nginx/html/cacti/poller.php (searching for “512” ought
to bring you to the correct line):

ini_set("memory_limit", "512M");

OpenBSD doesn’t like the way that Cacti checks whether
the local host is up via SNMP. I’ve found that configuring
Cacti to use UDP Ping instead of SNMP as the Ping
method for localhost will get your graphs going. You’ll find
the setting in the web administration section of Cacti.

Here is a sample /etc/snmpd.conf to get you going. This is
probably not a very secure SNMP configuration, but hey,
we’re only listening on 127.0.0.1 anyway.

Listing 1. Starting PHP-Fastcgi

chroot -g nobody -u nobody / env -i PHP_FCGI_CHILDREN=5 \

PHP_FCGI_MAX_REQUESTS=1000 \

/usr/local/bin/php-fastcgi-5.3 -q -c /etc -b

127.0.0.1:9000 &

if [-x /usr/local/bin/php-fastcgi-5.3]; then

 chroot -g nobody -u nobody / \

 env -i PHP_FCGI_CHILDREN=5 PHP_FCGI_MAX_REQUESTS=1000 \

 /usr/local/bin/php-fastcgi-5.3 -q -c /etc -b

127.0.0.1:9000 &

fi

http://bsdmag.org

12/2011 28

HOW TO

127.0.0.1 Sweet 127.0.0.1!

listen on 127.0.0.1

read-only community public

system services 74

PHP 5.3 is strict about how time functions are used. It’s
going to throw up a bunch of errors unless you set your
date.timezone variable in /etc/php-5.3.ini. Uncomment the
following line, and set your time zone:

;date.timezone =

Find out more about time zones in PHP here: http://
www.php.net/manual/en/datetime.configuration.php. At this
point we’ve added new PHP modules, and we’ve changed
several config files. Let’s restart some daemons: Listing 2.

Cacti only ships with graphs for your local host. It’s up
to you to read the Cacti documentation, and add more
graphs and data sources. You’ll find that your RAM and
CPU graphs aren’t working. The more I looked into the
problem, the more complicated things started to get.

I gave up when I ran across this post from OpenBSD
developer Hans Insulander, in which he calls net-snmp
…the most horrible piece of code I’ve ever seen. Later in
the thread, Aaron Glenn says SNMP uses ASN.1, so no
amount of polising [sic] it going to make it sane. It seems
that the bottom line is that the OpenBSD developers aren’t
going to put much SNMP support into the OS because they
don’t like the only SNMP solution that’s currently available.

Enter Symon. Like Cacti, Symon makes graphs; however,
Symon’s purpose is to graph the performance of localhost. To
make this work, we need three Symon components: Symon,
Symux, and Syweb. Installing the OpenBSD packages
almost works out-of-the-box. First, install the packages:

pkg_add -i symon syweb

The /etc/symon.conf file is fine. Leave it alone. Add the following
line just before the last closing curly brace in /etc/symux.conf:

datadir "/var/nginx/html/symon/rrds/localhost"

After installing the symon and syweb packages, we need
to move some folders to accommodate nginx.

mv /var/nginx/symon /var/nginx

mv /var/nginx/html/syweb /var/nginx/html

Then type in some commands:

mkdir /var/nginx/symon/rrds/localhost

chown -R nobody /var/nginx/symon

/usr/local/share/symon/c_smrrds.sh all

Edit /var/nginx/html/syweb/setup.inc. Comment out the
block for OpenBSD, Apache chrooted. Pay close attention
to where /* and */ are. Those are the comment blocks.

/* running OpenBSD, apache chrooted:

$symon['rrdtool_path']='/bin/rrdtool';

$symon['cache_dir']='/symon/cache';

$symon['host_tree']='/symon/rrds';

$symon['layout_dir']='/symon'; */

Create a new block for nginx:

/* running OpenBSD, nginx not chrooted: */

$symon['rrdtool_path']='/usr/local/bin/rrdtool';

$symon['cache_dir']='/var/nginx/symon/cache';

$symon['host_tree']='/var/nginx/symon/rrds';

$symon['layout_dir']='/var/nginx/symon';

Start Symux and Symon:

/usr/local/libexec/symux

/usr/local/libexec/symon

Add them to your /etc/rc.local

if [-x /usr/local/libexec/symux]; then

 echo -n ' symux'; /usr/local/libexec/symux

fi

if [-x /usr/local/libexec/symon]; then

 echo -n ' symon'; /usr/local/libexec/symon

fi

TOBY RICHARDS
Toby Richards has been a network administrator since 1997.
Each article comes straight from the notes that he takes when
doing a new project with *BSD.

Listing 2. Restarting Your Web Stack

/etc/rc.d/nginx restart

/etc/rc.d/snmpd restart

kill -9 ‘pgrep php‘

chroot -g nobody -u nobody / \

env -i PHP_FCGI_CHILDREN=5 PHP_FCGI_MAX_REQUESTS=1000 \

/usr/local/bin/php-fastcgi-5.3 -q -c /etc -b 127.0.0.1:9000 &

http://www.php.net/manual/en/datetime.configuration.php
http://www.php.net/manual/en/datetime.configuration.php
http://monkey.org/openbsd/archive/misc/0502/msg00164.html
http://wpd.home.xs4all.nl/symon/

www.balabit.com

Among clouds
 Performance and

 Reliability is critical

syslog-ng log server
The world’s first HSRL logging technology

HIGH-SPEED RELIABLE LOGGING
above 500 000 messages per second
zero message loss
trusted log transfer and storage

Download syslog-ng HSRL (version 4 F1)
product evaluation here

Attend to a free HSRL tech webinar here

http://www.balabit.com/network-security/syslog-ng/central-syslog-server/download
http://www.balabit.com/support/webinar

12/2011 30

HOW TO Extracting Useful Information From Log Messages

www.bsdmag.org 31

Applications usually send their log messages to the
system logging daemon of the operating system,
which delivers the messages to the place where

the log messages are stored to log files on the local
machine (found typically under /var/log/), or to a remote
server. Most UNIX and Linux operating systems use the
syslogd system logging daemon. The syslog daemon
adds some meta-information (called the syslog header)
to the received log messages, like the date and time the
message was received, or the name or address of the
host where it was created.

The syslog-ng project is a popular, alternative syslog
daemon well-known for its reliable message transfer and
flexible message filtering and sorting capabilities. Over
the recent years, it gained several useful features to
extend its capabilities, including the direct logging to SQL
databases, TLS-encrypted message transport, and the
ability modify the content of log messages. Owing to its
ability to parse and identify messages based on a pattern
database, and even to correlate log messages to identify
events, it can also double as a real-time, high-speed log
analyzing engine.

Standard syslog message Formats
Syslog messages usually come in one of two formats: the
RFC3164 (sometimes also called BSD-syslog or legacy-
syslog) message format, or the newer RFC5424 message

format. The main characteristics of the two formats are
summarized below.

RFC3164
An RFC3164 syslog message consists of the following
parts:

• PRI
• HEADER
• MSG

The total message cannot be longer than 1024 bytes.
The following is a sample syslog message: <133>Feb

25 14:09:07 webserver syslogd: restart. The message
corresponds to the following format: <priority>timestamp
hostname application: message.

The PRI part of the syslog message (known as Priority
value) represents the Facility and Severity of the message.
Facility represents the part of the system sending the
message, while severity marks its importance. The
Priority value is calculated by first multiplying the Facility
number by 8 and then adding the numerical value of the
Severity.

The HEADER part contains a timestamp and the
hostname (without the domain name) or the IP address of
the device. The timestamp field is the local time, without
timezone information.

Extracting Useful

The syslog-ng application is a powerful and flexible system
logging and log message processing tool to help the work
of system administrators. This article highlights some of its
newer and lesser-known capabilities.

What you will learn…
• The message model behind syslog messages
• The importance of metadata
• How to process, recognize, and correlate log messages using

syslog-ng

What you should know…
• The basics of system logging

Information From Log Messages

12/2011 30

HOW TO Extracting Useful Information From Log Messages

www.bsdmag.org 31

also extract data from the messages using parsers (more
on that later). The advantage of this approach is that it is
not limited to storing syslog messages, it can be easily
extended to other message-types as well, for example,
SNMP messages or audit logs.

More precisely, internally syslog-ng stores the following
data about every message:

• timestamps: The time syslog-ng received the
message, and also the time parsed from the incoming
message (if available)

• facility/priority: Values that represent the syslog
facility (kern, user, daemon, etc) and the priority of
the message (commonly called severity in RFCs).
Available both as numeric and text values.

• tags: Custom labels added to the message. For
example, syslog-ng automatically adds the ID of
the source to every message received from that
source.

• properties: Any other metadata added to or extracted
from the message. Properties are available as name-
value pairs. For example, HOST, PROGRAM, PID,
MSG, matches from filters using regular expressions
($1,$2), user-defined properties of the message, and
so on.

• SDATA: A subset of the properties, the data received
in the SDATA part of RFC5424-formatted messages.

You can modify most properties freely if needed,
for example using rewrite rules to set the value of a
property, or to search for a specific string or regular
expression and replace its value. However, some of the
properties are read-only, most notably the ones that
are related to the date when syslog-ng received the
message.

Why Metadata is Useful
Metadata is useful for several reasons. It provides
additional context about the log messages, making it
easier to understand the events, and can also provide
information about the environment of the event.

Message properties give you a flexible and powerful
way to tweak your logging configuration to best suit your
needs.

You can use templates that reference properties at
several places of syslog-ng, including the name of
the destination files, database tables, and so on. The
properties used in a template are automatically resolved
to their respective value that is relevant to the message.
This means that if you include the HOST property in the
name of the destination file on your central log server,

The MSG part contains the name of the program or
process that generated the message, and the text of the
message itself. The MSG part is usually in the following
format: program[pid]: message text.

RFC5424
The main improvement of the RFC5424 message format
is that the timestamp is in ISODATE format, meaning
that it includes timezone information as well. The other
important addition is that it introduces the Structured Data
(SDATA) part of the message, which can contain arbitrary
metadata about the message or the host. For example,
when reading log messages from files, the syslog-ng
syslog daemon includes information about the file, like
path, filename, and filesize. Unfortunately, using the
RFC5424 message format is not too widespread yet.

The Power of The syslog-ng message Modell
Internally, the syslog-ng application converts every
message it receives to a set of name-value pairs called
properties. Every part of the incoming message becomes
a property, for example, the sender hostname, the sending
application, the message itself, when the message was
sent, and also when it was received. The SDATA fields
of RFC5424-formatted messages are also automatically
converted to properties.

Other metadata, for example, tags or custom fields can
be added manually to the messages, but syslog-ng can

syslog-ng basics
The syslog-ng application can receive messages from different
types of message sources, including �les, sockets, or remote
hosts. The syslog-ng application reads incoming messages
and forwards them to the selected destinations. Destinations
are the places where the log messages are stored; they can
be �les, other hosts, sockets, database tables, or external
applications.

Sources and destinations are independent objects Log pa-
ths de�ne what syslog-ng does with a message, connecting
the sources to the destinations. A log path consists of one or
more sources and one or more destinations; messages arri-
ving from a source are sent to every destination listed in the
log path.

Log paths can include �lters. Filters are rules that select
only certain messages, for example, selecting only messages
sent by a speci�c application. If a log path includes �lters, sy-
slog-ng sends only the messages satisfying the �lter rules to
the destinations set in the log path.

Other optional elements that can appear in log statements
are parsers and rewriting rules. Parsers segment messages in-
to different �elds to help processing the messages. Rewrite ru-
les modify the messages by adding, replacing, or removing
parts of the messages.

12/2011 32

HOW TO Extracting Useful Information From Log Messages

www.bsdmag.org 33

syslog-ng will sort the incoming messages of every host to
separate files based on the hostname of the sender host.

Example:
Using properties in templates

destination d_file {

 file("/var/log/$YEAR.$MONTH.$DAY/$HOST.log");

};

To create a separate logfile for every application, just
add the $PROGRAM property to the template:

destination d_file {

 file("/var/log/$YEAR.$MONTH.$DAY/$HOST/$PROGRAM.log");

};

Example:
How to transfer metadata to the logserver
To transfer the name of a logfile to the syslog-ng servr,
set the .SDATA field of the messages your client. The
name of the source log file is available in the $FILE_NAME.
Property:

rewrite r_setfilename { set("$FILE_NAME" value(".SDATA.file@

18374.4.name"));

On the server side, create a destination that uses the
above property in its filename template:

destination d_test {

 file("/var/log/apache2/${.SDATA.file@18372.4.name}"

 create_dirs(yes)

);

 };

You can use templates to completely reformat or
restructure a log message, for example, to correct log
messages that do not comply with the syslog standards,
change the timestamp format of the message, or to
integrate better with external log processing scripts or
log analyzing applications.

Example:
Customizing message format

destination d_file { file("/var/log/messages"

 template("$ISODATE $HOST $MSGHDR$MSG\n"); };

Another important method for using message properties
are the filters, to select and sort log messages, to send

only the selected messages to a destination. Comparing
the values of properties, or combining filters with boolean
operators allows you to select exactly the messages you
are looking for.

Example:
Filtering messages
The following example selects messages with priority
level 4 or higher.

filter f_level {"$LEVEL_NUM" > "5"};

The following filter matches on hostnames starting with
the myhost string, for example, on myhost-1, myhost-2,
and so on.

filter f_wildcard {host("myhost*" type(glob));};

The true power of metadata and properties can be
harnessed when you use parsers to segment the MSG
part of the messages into meaningful properties. For
example, you can extract the username and hostname
from login and logout messages, the command executed
when using sudo, and so on. Extracting such information
allows you for example to store all these metadata in
a database, and create queries and reports to better
understand and review what happens on your systems.
In case something happens to one of your servers, you
can query every login event to see who has accessed
the system.

Example
Starting from version 3.3, the syslog-ng Open Source
Edition application can store the log messages and its
associated properties to a MongoDB database server.
From the MongoDB database, you can generate reports
for example using the JasperReports application.

Parsing Log Messages
Structured messages formatted as comma-separated
values can be easily segmented into separate fields
using syslog-ng’s csv-parser() functionality. These fields
become properties that can be used, for example, in
templates or filters if you add custom names to them. The
log messages from the Apache webserver application can
be parsed that way, and filtered into different files based
on the username to provide audit trails for the users’
actions. Note that you can use parsers on any message
field, not only on the textual part of the message. You can
also segment hostnames structured like myhost-1 and
myhost-2 if needed.

12/2011 32

HOW TO Extracting Useful Information From Log Messages

www.bsdmag.org 33

Example:
Parsing Apache Log Messages
The following parser processes the log of Apache web
servers and separates them into different fields. Apache
log messages are actually whitespace-separated, and
usually look something like:

192.168.1.1 - - [31/Dec/2007:00:17:10 +0100] „GET /

cgi-bin/example.cgi HTTP/1.1” 200 2708 „-” „curl/7.15.5

(i4 86-pc-linux-gnu) libcurl/7.15.5 OpenSSL/0.9.8c zlib/

1.2.3 libidn/0.6.5” 2 example.balabit

A parser that processes these messages in syslog-ng
looks like: see Listing 1. Another, more powerful option is
to process the messages using a pattern database. As this
is a bit more complex, it is detailed in the next section. The
current development version of syslog-ng (version 3.4) will
be able to parse JSON-formatted fields as well.

The syslog-ng Pattern Database
The syslog-ng application can also compare the contents
of the received log messages to a set of predefined
message patterns. That way, syslog-ng is able to identify
the exact log message, assign metadata relevant to that
particular log message (for example, the type of the event
like security, hardware error), and also to extract data
from the recognized message.

The syslog-ng pattern database uses Radix trees,
because this method is fast and scales very well. The
speed of processing a message is practically independent
from the total number of patterns in the database, it is only
related to the length of the message and the number of
similar patterns.

In comparison with traditional message processing
solutions that typically use regular expressions, syslog-
ng message patterns are easy to write, understand, and
maintain. Compare the following:

Listing 1. Parsing Apache log messages with a csv-parser

parser p_apache {

csv-parser(columns("APACHE.CLIENT_IP", "APACHE.IDENT_NAME", "APACHE.USER_NAME",

"APACHE.TIMESTAMP", "APACHE.REQUEST_URL", "APACHE.REQUEST_STATUS",

"APACHE.CONTENT_LENGTH", "APACHE.REFERER", "APACHE.USER_AGENT",

"APACHE.PROCESS_TIME", "APACHE.SERVER_NAME")

flags(escape-double-char,strip-whitespace)

delimiters(" ")

quote-pairs('""[]')

);

};

Listing 2. A pattern database for a single log message

<patterndb version='4' pub_date='2010-10-17'>

 <ruleset name='ssh' id='123456678'>

 <pattern>ssh</pattern>

 <rules>

 <rule provider='me' id='182437592347598' class='system'>

 <patterns>

 <pattern>Accepted @QSTRING:SSH.AUTH_METHOD: @

for@QSTRING:SSH_USERNAME: @from\ @QSTRING:SSH_CLIENT_ADDRESS: @port @NUMBER:SSH_PORT_NUMBER:@

ssh2</pattern>

 </patterns>

 </rule>

 </rules>

 </ruleset>

</patterndb>

12/2011 34

HOW TO Extracting Useful Information From Log Messages

www.bsdmag.org 35

A log message from an OpenSSH server:

Accepted password for joe from 10.50.0.247 port 42156 ssh2

A regular expression that describes this log message
and its variants:

Accepted \ (gssapi(-with-mic|-keyex)?|rsa|dsa|password|

publickey|keyboard-interactive/pam) \ for [^[:space:]]+

from [^[:space:]]+ port [0-9]+((ssh|ssh2))?

An equivalent pattern for the syslog-ng pattern
database:

Accepted @QSTRING:auth_method: @ for @QSTRING:username:

@ from @IPv4:client_addr: @ port @NUMBER:port:@

As you can see, the syslog-ng pattern uses data types to
specify the type of value that it expects in the message,
for example, quoted-string (QSTRING), number, IP
address. Also, the matching values are extracted from
the message and can be used as properties. In the above
example, such properties include the authentication
method, the username, and the IP address of the client.
These properties can be used in filters and templates.
If you store the log messages and these properties in a
database, it is really simple to query which users have
accessed your server from which clients.

A syslog-ng pattern database is an XML file that stores
patterns and various metadata about the patterns. The
message patterns are sample messages that are used
to identify the incoming messages. Metadata can include

descriptions, custom tags, a message class – which is just
a special type of tag – and any other properties added to
the messages matching the pattern.

Example:
A pattern database containing a single pattern
The following sample database contains a rule for the
SSH login messages: Accepted password for sampleuser from
10.50.0.247 port 42156 ssh2.

The following is a simple pattern database containing a
matching rule (Listing 2).

This metadata can be used for example to tag important
messages, and then filter the messages based on this
tags. You can also generate special alert messages if a
particular log message is received, as described in the
next section.

Triggering New Messages and External Actions
With the syslog-ng pattern database you can
automatically generate new messages when a particular
message is recognized. The generated messages can be
configured within the pattern database rules, practically
a new message can be generated for every incoming log
message. Of course this is only rarely needed, unless log
normalization is a must for you.

Example:
Generating a new message
When inserted in a pattern database rule, the following
example generates a message when a message matching
the rule is received (Listing 3).

Sending alerts directly from syslog-ng is currently not
supported, but it is reasonably simple to pass the selected
messages to an external script that sends out alerts in e-
mail or SNMP. Also, the next version of syslog-ng (3.4) will
include an SMTP destination to send emails directly from
syslog-ng.

Messages can be triggered also when using syslog-ng
to correlate messages, and the correlation timeout of a
context expires. This is explained in the next section.

Correlating Log Messages
Message correlation is one of the foundations of log
analysis and reporting, because log messages tend to
be hectic, and often separate important information about
events into different log messages.

For example, the Postfix e-mail server logs the sender
and recipient addresses into separate log messages. For
OpenSSH, if there is an unsuccessful login attempt, the
server sends a log message about the authentication
failure with the reason for the failure in the next message.

Listing 3. De�ning actions in the pattern database

<actions>

 <action>

 <message>

 <values>

 <value name="MESSAGE">A log message from

$HOST matched rule number

$.classifier.rule_id</value>

 </values>

 </message>

 </action>

</actions>

12/2011 34

HOW TO Extracting Useful Information From Log Messages

www.bsdmag.org 35

But most of the time the actual event and its
circumstances are important, and not the individual log
messages. Being able to collect information as events
rather than separate messages about an event can make
the life of every system administrator a lot easier.

Message correlation in syslog-ng operates on the log
messages successfully identified by the syslog-ng’s
pattern database. You can extend the rules describing
message patterns with instructions on how to correlate
the matching messages.

Correlating log messages involves collecting the
messages into message groups called contexts. A
context consists of a series of log messages that are
related to each other in some way, for example, the log
messages of an SSH session can belong to the same
context. Messages may be added to a context as they are
processed. The context of a log message can be specified
using simple static strings or with macros and dynamic
values. For example, you can group messages received
from the same host ($HOST), application ($HOST$PROGRAM), or
process ($HOST$PROGRAM$PID).

Messages belonging to the same context are correlated,
and can be processed in a number of ways. It is possible
to include the information contained in an earlier message
of the context in messages that are added later. For
example, if a mail server application sends separate log
messages about every recipient of an e-mail (like Postfix),
you can merge the recipient addresses to the previous log
message. Another option is to generate a completely new
log message that contains all the important information
that was stored previously in the context, for example, the
login and logout (or timeout) times of an authenticated
session (like SSH or telnet).

To ensure that a context handles only log messages
of related events, a timeout value can be assigned to a
context, which determines how long the context accepts
related messages. If the timeout expires, the context is
closed. Also, the context can be explicitly closed when the
last message of a context is received If a context collects
the messages of a connection, the log message about the
server closing the connection can trigger the closing of
the context.

When message correlation is used together with
triggering actions, you can also refer to fields and values
of earlier messages of the context. The following patterns
would put out a correlated message that included
information from both log messages (Listing 4).

To process already collected log messages, syslog-
ng also allows for correlating log messages from log
files. For this reason, the time elapsed between two log
messages is calculated from the actual timestamps of the
log messages instead of using the system time.

Where to Find syslog-ng
The syslog-ng Open Source Edition application is available
in the FreeBSD Ports and Packages Collection. Earlier the
port was named sysutils/syslog-ng3, which was renamed
recently to syslog-ng with the removal of the syslog-ng
1.X port. To reduce the number of external dependencies,
packages only have a limited feature set. To be able to
use every feature described in this article, install syslog-
ng version 3.3 from up-to-date ports. The source of
syslog-ng is also available at the project’s homepage at
http://www.balabit.com/network-security/syslog-ng/. If you
experience problems or have a comment, join the syslog-
ng mailing list at https://lists.balabit.hu/mailman/listinfo/
syslog-ng/.

Listing 4. Consolidating information into a single message

<pattern>Accepted @QSTRING:SSH.AUTH_METHOD: @ for@QSTRING:SSH_USERNAME: @from @QSTRING:SSH_CLIENT_ADDRESS:

 @port@NUMBER:SSH_PORT_NUMBER:@ ssh2</pattern>

<pattern>pam_unix(sshd:session): session closed for user @ESTRING:SSH_USERNAME:</pattern>

<value name="MESSAGE">An SSH session for $SSH_USERNAME from ${SSH_CLIENT_ADDRESS}@1

ROBERT FEKETE
Robert Fekete has been the documentation maintainer of
BalaBit, a Hungarian software company developing syslog-ng
and other network security products. He is also an open-source
enthusiast and enjoys writing articles about free software – time
permitting.

http://www.balabit.com/network-security/syslog-ng/
https://lists.balabit.hu/mailman/listinfo/syslog-ng/
https://lists.balabit.hu/mailman/listinfo/syslog-ng/

12/2011 36

SECURITY Anatomy of a FreeBSD Compromise (Part 1)

www.bsdmag.org 37

I have a love-hate relationship with the Internet. Being a
bit of an IT dinosaur who comes from the days of 1200
Baud modems, leased lines and CP/M, IT security in

the 1980’s was a much simpler affair and so much easier
to manage. In those days, if your company was fortunate
enough to have a corporate network it was an expensive
affair, rigorously policed and the opportunities for mischief
was mainly down to the white hat hacker, who did not want
to compromise the system for financial gain, commercial
secrets or to cause embarrassment. Rather, the mindset
was to find out more – in other words there was very
little malevolence and when it did happen, an attack
was relatively easy to detect and contain as often it was
being made by an individual. Skip forward to 2011, and
we have bot-nets, port scanners, malware and viruses,
social engineering and technology has permeated further
into our offices, homes and cars. Attacks are now on a
global scale – country versus country – and anyone with
an Internet connection can quickly download a guide on
how to perform a compromise with surprising ease. While
governments are very slow to understand and legislate
effectively for these issues, as a system administrator you
are the first line of defense – unfortunately prosecutions
are generally rare unless the victim or the hacker is
particularly high profile.

The Internet aside, computer security has always been
a fascination for me and it never ceases to amaze me

how organizations manage to survive without major
incident. Open plan offices (particularly in IT), passwords
not encrypted or data stored in clear text databases
are just some of the risks, but often the foolishness of
colleagues is very revealing. Sending an unencrypted
database of customer details via email is one example,
but I regularly have observed technical support staff
(or even badly designed systems) send out emails with
login details. Apart from the risk of an man-in-the-middle
attack, what happens when Joe saves the email in the
email archive or on his desktop? Anyone with access can
quickly determine how to compromise another system. So
the problem is not just one of securing the technology, but
also of educating the users of best practice.

How Secure Are You?
I have always said that the only way to 100% secure
a server is to encase it in concrete, and drop it at the
bottom of the Atlantic ocean. This might sound extreme,
but it has even been suggested that OpenBSD has been
compromised (See the Register article in Table 3). There
are too many attack vectors, bugs and creative ways of
getting todays complex applications to perform tasks they
were never really designed for. I often use telnet to test
web-servers or send test emails for example, and with
modern diagnostics that were not available 30 years ago,
the black-hats have the advantage.

Anatomy

While the BSD family is more secure than most, no server
or IT system is invulnerable to attack. In this article we will
examine best practices to prevent disruption and what to
do when the worst does happen.

What you will learn…
• How to plan a security strategy

What you should know…
• BSD administration skills

of a FreeBSD Compromise (Part 1)

12/2011 36

SECURITY Anatomy of a FreeBSD Compromise (Part 1)

www.bsdmag.org 37

our IT infrastructure is based very much on trust. Sure
we can white-list our web-servers so only our esteemed
customers can access our pages, but even this would not
be a practical solution, as it is relatively trivial to spoof an
IP and MAC address. Private networks have their uses,
but in the Internet age everybody wants to get connected.
WWW does not stand for World Wide Web, in reality it
means Wild Wild West.

Know Your Enemy
In the The Art of War Sun Tzu said Know your enemy and
indeed the sys-admin needs to develop a war-like attitude
if he has any valuable data or public facing servers. First
of all, the most obvious area of vulnerability are your
users. A strong Acceptable Use Policy that is enforced
rigorously by senior management is a good starting
point, the biggest issue is finding the right balance. Too
restrictive, and IT will be considered overbearing and it
will be unenforceable, too loose and the policy will not
have sufficient teeth to deal with those that do not take
security seriously. It is worth considering adding good
practice in here about confidentiality and data security,
as many countries now have legislation concerning data
protection and e-commerce transactions. While there is

Take the example of the zero-day exploit. Black hat
Fred discovers an undocumented vulnerability in software
X. He tells his friends, but warns them not to tell anyone or
publicize it. If the system administrators of these systems
do not detect any strange behavior in their systems, and
there is no process available to recognize the attack, Fred
and his friends will remain undetected. It is only when the
attacks become more widespread, damaging, a security
researcher finds out or the attack is publicized that the
developer of software X can then patch the vulnerability. It
is all based on scale and risk – if the attacks are widespread
someone will eventually pick up on the anomaly, and if the
damage is severe, questions will quickly be asked. But
what happens if Fred keeps the vulnerability to himself
and only uses it once or twice? The chance of detection
is small provided the payload (i.e. damage to the system)
is trivial, and the developer and security community is not
aware of the exploit. Until Fred’s technique is released
into the wild, the vulnerability will remain exploitable until
it reaches a tipping point where the problem diagnosed,
analyzed and fixed – provided Fred is not greedy or stupid
enough to attack a honey-trap.

This is the real problem – the unknown unknowns.
Good systems management can reduce the risk, but it
will never eliminate it entirely. Like the banking system,

Table 1.The Sys-admin 10 Commandments

The 10 commandments of the security aware
administrator
Paranoia is good – Evidence based paranoia is even better. Log
everything including checksums.

Your adversary might be closer than you think – keep
con�dential information con�dential.

Encrypt, password protect and only let others have access if they
really need it. Use secure passwords and change them regularly.
Don't embed passwords in application scripts etc.

Patch and upgrade often.

Only run services if you really really have to. Even then, harden if
you can.

Regular backups are not optional – they are essential.

Try and hack your own systems. You'll be surprised at what you
will �nd. Don't be complacent.

Others will not be as conscientious as you – ensure everyone else
is security aware.

If you are attacked, don't panic. Be methodical and retain the
evidence. If in doubt or it is a major incident, bring in security
professionals before you destroy any trail. Don't be tempted to
exact technological revenge – you will compromise any official
investigation and possibly leave yourself open to prosecution.

You are not alone – there are more people who are with the
good guys than with the bad.

Table 2. The Hackers 10 Commandments

The black hat hacker – 10 commandments
Cover your tracks. Do not expose your originating IP address
ever. Clean and �ush any evidence that you have been visiting.

Get root. Once you have this, the world is your oyster and you
can hide yourself even better.

Do not show your hand. Maxing out a servers' resources just
announces your presence. You want your victim to be oblivious
to your presence so don't be greedy.

No server is 100% secure, but some are less secure than others.
Go for the easy targets �rst – the more common the exploit the
less chance of being exposed.

Trust no-one. Bragging rights are �ne until someone wants to
get the drop on you.

If you hack you will upset people. Some of these people will be
powerful enough to punish you – so consider the risks.

Know your code. If you don't understand C, assembler and
pointers, you are just an amateur.

Get social skills. One the most powerful methods of compromise
is social engineering, and this requires gaining the con�dence of
others.

Keep abreast of technology. New vulnerabilities appear every
day as the technological �eld expands. There are few security
experts and many bad programmers.

Physical access to machines always gives you an edge (e.g. key-
loggers) – but the risks are greater

12/2011 38

SECURITY

www.bsdmag.org

commercial software available for data loss prevention,
but those who understand Unix well will appreciate
the power of scripting here. As part of the AUP, any
confidential information should be marked as such, and
it would be trivial to configure an email server to re-route
attachments to a queue where they would be monitored
and released if OK. Taking things further, emails could be
scanned for certain key words and queued / released as
appropriate. The only problem here is those that want to
get around the system, and one good example of how this
can be prevented is to refuse attachments at the server,
and use a secure gateway where files are uploaded and
collected by the customer. The password and login details
should be telephoned or faxed through to the other end
and security then becomes the other guy’s problem. The
majority of in-house compromises are down to mistakes
(Be honest – when was the last time you accidentally sent
someone a sensitive email in error?) and good practice
will minimize the damage in most cases. Confidential
documents on public servers are a common one, but
by putting the correct procedures in place (e.g. only the
web-master can upload documents) many risks can be
mitigated. A good firewall is essential, as well as multiple
proxies to deal with HTTP and FTP traffic. Email scanning
for vulnerabilities (including attachments and links) works
well when centralized.

Next, we have the deliberate compromise by staff. I
know of documents and applications deliberately deleted
or stolen, cables damaged or re-routed and hardware
damaged. A colleague of my wife deliberately sabotaged
a system on being denied a promotion, so this is where
management and IT have a good platform to build
relationships – when there is a risk to the organization. Is
Dave in accounts about to be demoted / fired? Ensure his
account and system rights are locked prior to that meeting
with HR.

Finally, there is just carelessness. Open plan offices and
wide screen TFT monitors are a snoopers delight, as are

network diagrams with IP addresses and passwords left
on desks or on monitors. If everyone in your organization
is trustworthy this is fine, but the larger the organization
the more difficult it becomes to trust everyone. I was once
almost physically abused by a manager when I refused
to give him the administrator passwords for multiple
servers, this despite offering him unlimited access to what
he wanted under an account that was tied to him. Alarm
bells were ringing, and sure enough he was eventually
discovered downloading pirated software from some
rather strange locations. Only allow people access to
systems on a need to know basis, and if in doubt say no.
If need be, clear it with a more senior manager, but the
default should be caution.

The next category covers the outside world. There
are different types of hacker with different agenda’s, as
demonstrated in Table 4. I have split hackers into different
categories, as different type of attack carry different
payloads, levels of compromise etc. In reality, there are
only the good guy’s and the bad guys, but what I am trying
to illustrate here is that while all attacks are objectionable
in one degree or another, there difference is level of
seriousness to the attack. A script kiddie will be relatively
trivial to deal with (unless of course there has been
significant incident e.g. passwords compromised or data
lost) whereas a full-blown attack against your organization
by a foreign competitor or political adversary wanting to
extract secrets will be a different matter entirely. One
may require a server rebuild, the other the involvement of
law enforcement and a full audit. Sadly, for the individual
or small business there is little redress from the police
or government when an attack takes place – I can just
picture the scene if I walked into a police station to
report an outbreak of the Melissa virus. If you are a large
corporate, politically connected or a government agency
you may be in the fortunate position to be listened to if the
attack is serious (See EDF Greenpeace incident Table
1). Most organizations have the attitude that a hacking

Table 3. References

Reference Site
FBI 'planted back-door' in OpenBSD http://www.theregister.co.uk/2010/12/15/openbsd_backdoor_claim

EDF �ned for hacking into Greenpeace http://www.ft.com/cms/s/0/78f3b452-0c70-11e1-8ac6-

Post Compromise Shell Shoveling http://www.madirish.net/node/237

MUH http://muh.sourceforge.net/

Process faker http://packetstormsecurity.org/search/�les/?q=process%20faker

Metasploit framework http://metasploit.com

Wireshark http://www.wireshark.org

Nmap http://nmap.org

Backtrack Linux http://www.backtrack-linux.org

http://www.theregister.co.uk/2010/12/15/openbsd_backdoor_claim
http://www.ft.com/cms/s/0/78f3b452-0c70-11e1-8ac6-
http://www.madirish.net/node/237
http://muh.sourceforge.net/
http://packetstormsecurity.org/search/files/?q=process%20faker
http://metasploit.com
http://www.wireshark.org
http://nmap.org
http://www.backtrack-linux.org

12/2011 38

SECURITY

www.bsdmag.org

attempt is Not their problem. I recently received a phishing
email posing as major UK bank, and being inquisitive, I
checked out to see if the phishing site was still active. To
my surprise it was, so as a good netizin I contacted the
customer services at the bank to be informed that they did
not have a security officer available to deal with incidents
at the weekends. ISP’s and Internet businesses are also
at fault – I have lost count of the number that I have
contacted regarding spam or fraudulent email claiming
to originate from a blue-chip business to be met with a
complacent So what? – so to the message is not getting
through about security especially the damage this causes
a companies reputation.

Adopting a Security Minded Approach – The
Security Aware Administrator
I have listed the 10 commandments for both administrators
and hackers (Table 1 & 2) as it is important to think the
way the other side thinks. The biggest enemy of all is
complacency, as I recently discovered with my very
elderly FreeBSD 6.1 box was hacked. While Internet
facing, I had taken great pains to ensure that the system
was adequately fire-walled, penetration tested and secure
when it was commissioned. As the server is really old and
only used as a proxy and mail gateway, I made the decision
not to manually upgrade or patch it on a regular basis as
it would be quicker to rebuild with FreeBSD 8 when I
eventually got round to upgrading all of the hardware etc.
Part of me knew I was asking for trouble, especially as I
was running a legacy version of Apache 1.3, but as there
was no websites other than a holding page I thought I was
safe. I also succumbed to the mantra if it ain’t broke don’t
fix it as it was essential to keep the box running. I knew my
E-mail was secure behind the firewall (store and forward
to ISP and tied down by IP address) and there was only
one non-root login account to SSH on a irregular port with
a strong password. The server was regularly scanned
for root-kits etc, and the IP address provided by my ISP
was dynamic. While I observed irregular traffic accessing
non-existent pages on the website, I did not investigate
this further mainly due to time and there was no obvious
pattern as to their origin. With hindsight, I should have put
together some scripting that automatically fire-walled IP
address on multiple requests to non-existent pages.

A few weeks ago I started experiencing problems with
my broadband connection, which very shortly afterwards
resulted with my broadband router becoming totally dead.
As this is supplied by my ISP, I could not patch this any
more than the manufacturer had, so I did make some limited
modifications to improve security e.g. disabling wireless
networking etc. I replaced the router with a spare and

http://bsdmag.org

12/2011 40

SECURITY

while testing performed some diagnostics with NETSTAT
and discovered traffic to an IRC server in Hungary. As
my wife and daughter both have Internet access, I wasn’t
immediately concerned, so I checked the internal LAN
but this was not the origin. Isolating the server, I checked
both PS and TOP for irregular processes, but nothing was
there. TCPDUMP was my next stop, and traffic was going
out once a minute or so but nothing was coming back, so
by this time I was beginning to realize not all was well with
my server. The final clue was running LSOF – there were
files open in my /tmp directory that were not recognized,
that had been written to by www-data. This was what gave
the game away – I didn’t have any web-pages that would
write anywhere on the server, and further investigation
showed a MUH infection which was cloaked by Process
Faker. The hacker was running a service to an IRC server
off the back of HTTPD, and was running a crontab under
the www-data user account to restart the process should
the server be rebooted. As the files were flagged as owner
www-data, it was clear that Apache was the week link in
the chain, and access was obtained over port 80, possibly
using a post command and shell shoveling. All in all, quite
a sophisticated hack. Fortunately, looking at the logs the
hacker had not managed to successfully connect to the
IRC server, so I was happy that no data loss had taken
place. Removing the crontab and the files from the /tmp
directory cured the problem, so I disabled Apache for the
time being and the server is now functioning as expected.

In the end analysis – in breaking the 4th commandment
(Table 1) it comes down to this – As Catherine Aird said:
If you can’t be a good example, then you’ll just have to
serve as a horrible warning. I hope my experience will
useful to all.

Table 4. Reasons for compromise

Type of hacker Modus Operandi
“White hat”
ethical hacker

Breaks into systems just for fun / learning. No damage done. Sys-admin and software writer privately informed of
exploit, may make exploit public if the attacked parties do not take threat seriously.

Script Kiddie Pulls exploits off the web and runs against public or private servers. Does it for the kicks, not aware of the risks to
themselves (e.g. exposed IP address) or attacked systems. Often takes the form of Denial of Service attacks (e.g.
overloading a server with requests).

Common
hackers and
spammers

Potentially linked to organized crime, wants to reach as many machines as possible as they are often quickly
discovered. Uses many attack vectors, from malware to phishing and website compromise. Interested in everything
from harvesting email addresses to credit card numbers and denial of service attacks. Majority of attacks can be
mitigated by good overall security apart from zero-day exploits.

Bandwidth
theft

Use systems as devices for man-in-the-middle attacks, or to cloak illegal activity. On the rise with Wireless networking
/ Bluetooth. Network equivalent of phone-phreaking.

“Black hat”
hacker

Wants access to speci�c commercial or personal secrets, passwords, to deliberately damage and corrupt systems
/ data and targets a speci�c victim for a reason. Professional level of exploit, would use any and all possible attack
vectors to gain advantage (e.g. malware/social engineering/key logging/surveillance/network sniffing/phone tap
etc.) Not to be confused with the common hacker who plays the numbers game – this is a targeted speci�c attack e.g.
Stuxnet worm.

In The Forthcoming Articles
We will look further at effective strategies for improving
security as well as security tools including packet sniffers
and port scanners, honey-traps and some quick and
dirty firewall rules that will help mitigate an attack on
Apache. We will also look at some vulnerability checkers,
penetration testing and attempt to recreate the MUH
attack again on a test server. I have provided the links in
table 3 to some of the more well known tools.

Please Note
The information in these articles is designed for system
administrators to help improve systems security. While
testing and discovering vulnerabilities in your own
personal systems for the purpose of improving security
is perfectly legal in the UK, legislation is different in other
parts of the world. Employers may take disciplinary and /
or legal action against employees if these tools are used
in the workplace without permission. Using these tools
against third-party systems without permission is not only
considered unethical, but is also illegal in many countries.
The author and BSD Magazine do not condone unethical
or illegal hacking.

ROB SOMERVILLE
Rob Somerville has been passionate about technology since
his early teens. A keen advocate of open systems since the mid
eighties, he has worked in many corporate sectors including
�nance, automotive, airlines, government and media in a
variety of roles from technical support, system administrator,
developer, systems integrator and IT manager. He has moved on
from CP/M and nixie tubes but keeps a soldering iron handy just
in case.

http://www.exonetric.com/

12/2011 42

SECURITY Hardening BSD With Security Levels

www.bsdmag.org 43

This article covers the configuration of security
levels via securelevel for OpenBSD, FreeBSD,
NetBSD and DragonFlyBSD.

The function of the security level is to reduce the
capabilities allowed by the kernel depending on the
configured level. By default, all of the BSD kernels have
this functionality including the ability to make changes
upon system startup with settings in the rc.conf file.
The security level can be increased while the operating
system is running, but only lowered when the system
goes into single user mode or is rebooted. FreeBSD
apparently has the ability with option REGRESSION compiled
into the the kernel to use a sysctl value to lower the
security level.

The settings for securelevel are primarily the same for
each of the BSD operating systems. Listing 1 details the
starting security levels for each BSD operating system.
The versions used are FreeBSD 8.2, OpenBSD 5.0,
NetBSD 5.1, DragonFlyBSD 2.10.

The most notable difference is that OpenBSD by
default is set to security level 1. The other three BSD
operating systems default to permanently insecure
mode. OpenBSD and NetBSD have similar settings
just as FreeBSD and DragonFlyBSD share the same
settings. Starting with security level -1, all devices/files/
memory can be written to and manipulated. As the man
pages mention, this default setting should be changed

on FreeBSD, NetBSD, and DragonFlyBSD. Setting file
attributes with chflags can be overridden as detailed in
Listing 2.

The security level can be increased by updating the
sysctl value for kern.securelevel as shown in Listing 3.

For FreeBSD, NetBSD and DragonFlyBSD at
securelevel 1, the chflags command output will be
similar to the default level in OpenBSD. This allows for
configuration files to be locked down to maintain the
integrity of the system when using the system immutable
flag. In addition to configuration files, the integrity of
logs files can be maintained as they continue to grow.

Hardening

By default, BSD servers are more secure then other
operating system installations but still require some
changes in order to be production ready. Security levels are
one of the tools that can be used in order to maintain the
state of the system when being deployed in production.

What you will learn…
• How to con�gure the security level on the BSD operating systems.
• How to use ch�ags to lock down system con�gurations and log

�les.

What you should know…
• Basic BSD knowledge to navigate the command line .
• Basic knowledge of sysctl.

BSD With Security Levels

Listing 1. The following levels are for each operating system

FreeBSD 8.2

kern.securelevel: -1

OpenBSD 5.0

kern.securelevel=1

NetBSD 5.1

kern.securelevel = -1

DragonFlyBSD 2.10

kern.securelevel: -1

12/2011 42

SECURITY Hardening BSD With Security Levels

www.bsdmag.org 43

Listing 2. The following are commands run on the different BSD operating systems for sappnd and schg (system append-only and system
immutable) �ags. Note the difference between OpenBSD and the others as OpenBSD does not allow the changing of the sappnd or schg
�ags at the default security level of 1

FreeBSD, NetBSD and DragonFlyBSD setting schg and

sappnd with chflags

freebsd# ls

test.conf

freebsd# chflags schg test.conf

freebsd# ls -lo

total 2

-rw-r----- 1 root wheel schg 22 Nov 16 12:00

test.conf

freebd# rm -rf test.conf

rm: test.conf: Operation not permitted

freebsd# chflags noschg test.conf

freebsd# rm -rf test.conf

freebsd# ls

freebsd#

freebsd# echo "LogEntry: Test" >> test.log

freebsd# wc -l test.log

 1 test.log

freebsd# chflags sappnd test.log

freebsd# ls -lo

 total 2

-rw-r--r-- 1 root wheel sappnd 15 Nov 16 12:24

test.log

freebsd# echo "LogEntry: Test" >> test.log

freebsd# wc -l test.log

 2 test.log

freebsd# rm -rf test.log

rm: test.log: Operation not permitted

freebsd# chflags nosappnd test.log

freebsd# rm -rf test.log

freebsd# ls

freebsd#

OpenBSD setting schg and sappnd with chflags

ls

test.conf

chflags schg test.conf

ls -lo

total 4

-rw-r--r-- 1 root wheel schg 11 Nov 16 11:23

test.conf

rm -rf test.conf

rm: test.conf: Operation not permitted

chflags noschg test.conf

chflags: test.conf: Operation not permitted

echo "LogEntry: Test" >> test.log

wc -l test.log

 1 test.log

chflags sappnd test.log

echo "LogEntry: Test" >> test.log

wc -l test.log

 2 test.log

rm -rf test.log

rm: test.log: Operation not permitted

chflags nosappnd test.log

chflags: test.log: Operation not permitted

12/2011 44

SECURITY

FreeBSD and DragonFlyBSD are also restricted from
loading and unloading kernel modules. This affects the
functionality of kldload and kldunload. Another important
detail is how FreeBSD jails implement the securelevel.
The highest value is accepted by the jail even if the host
value is set lower. This allows for the host to manipulate
the necessary files with the jails being restricted as
necessary.

Each BSD operating system has a max security
level that can be configured with a subtle difference.
FreeBSD and DragonFlyBSD share the same limit of 3,
which is the same as security level 2 in OpenBSD and
NetBSD. This distinction is due to the network settings
that OpenBSD and NetBSD include in level 2 that are
not used in FreeBSD and DragonFlyBSD unless you

set the level to 3. Securelevel 2 prevents the changing
of the system time backwards or moving it more then 1
second. This setting when used in conjunction with the
system append-only flag allows for the log files to not
only be be correct but accurate to the time in which the
entries were made. For security level 3 (security level
2 for OpenBSD and NetBSD), firewall rules can not be
altered. The system run level would have to be changed
in order to modify the operating system. Example output
for OpenBSD is detailed in Listing 4.

Though these features do help to lock down the BSD
operating system, they must be tested and understood
before sending out a production system. The security
section of the FreeBSD handbook mentions that the
system files prior to booting need to be protected in
order for the securelevels to be effective. If an attacker
is able to run code before the securelevel is set, the
protections can be evaded. Beyond this, maintenance
of the files may be difficult as the system would either
require single-user mode or to be taken off-line in order
to be updated.

Just like any other security tool, setting a security level
is not a solution in and of itself. The securelevel setting
provides a way to maintain the integrity of the running
operating system. There are different file system features
which are more flexible such as access control lists and
mandatory access controls. Utilizing all of the security
tools in the BSD operating systems help to keep the
servers secured and running the way in which they were
originally deployed.

References
• FreeBSD man page for securelevel: http://www.freebsd.org/cgi/man.cgi?query=security&sektion=7&apropos=0&manpath=FreeBSD

+8.2-RELEASE
• FreeBSD Handbook warning on securelevels: http://www.freebsd.org/doc/en/books/faq/security.html#SECURELEVEL
• OpenBSD man page for securelevel: http://www.openbsd.org/cgi-bin/man.cgi?query=securelevel&sektion=7
• NetBSD man page for securelevel: http://netbsd.gw.com/cgi-bin/man-cgi?secmodel_securelevel+9+NetBSD-current
• DragonFlyBSD man page for securelevel: http://leaf.dragon�ybsd.org/cgi/web-man?command=securelevel§ion=ANY

Listing 3. The following are the sysctl commands to increase the
kernel security level. OpenBSD being already at level 1 is increased
to level 2

FreeBSD 8.2

freebsd# sysctl kern.securelevel=1

kern.securelevel: -1 -> 1

OpenBSD 5.0

sysctl kern.securelevel=2

kern.securelevel: 1 -> 2

NetBSD 5.1

sysctl -w kern.securelevel=1

kern.securelevel: -1 -> 1

DragonFlyBSD 2.10

%sysctl kern.securelevel=1

kern.securelevel: -1 -> 1

Listing 4. The following is the output generated on the command
line for OpenBSD with securelevel set to 2 and trying to �ush the
�rewall rules for pf

pfctl -F rules

pfctl: pfctl_clear_rules: Operation not permitted

MICHAEL SHIRK
Michael Shirk is a BSD zealot who has worked with OpenBSD and
FreeBSD for over 6 years. He works in the security community
and supports Open-Source security products that run on BSD
operating systems.

http://www.freebsd.org/cgi/man.cgi?query=security&sektion=7&apropos=0&manpath=FreeBSD+8.2-RELEASE
http://www.freebsd.org/cgi/man.cgi?query=security&sektion=7&apropos=0&manpath=FreeBSD+8.2-RELEASE
http://www.freebsd.org/doc/en/books/faq/security.html#SECURELEVEL
http://www.openbsd.org/cgi-bin/man.cgi?query=securelevel&sektion=7
http://netbsd.gw.com/cgi-bin/man-cgi?secmodel_securelevel+9+NetBSD-current
http://leaf.dragonflybsd.org/cgi/web-man?command=securelevel§ion=ANY

http://www.freebsdfoundation.org/

12/2011 46

LET’S TALK FreeBSD Foundation Update

www.bsdmag.org 47

It also funds and manages development projects,
sponsors FreeBSD events and Developer Summits,
and provides travel grants to FreeBSD developers

who would otherwise be unable to attend Developer
Summits.

This article summarizes the conferences and projects
that the Foundation funded in 2011. It concludes with how
you can assist the Foundation in its efforts.

Conferences ,Travel Sponsorship, and
Conference Booths
In 2011, the Foundation provided sponsorship for the
following BSD conferences:

• AsiaBSDCon, held in Tokyo, Japan from March 17-20
• BSDCan and Developer Summit, held in Ottawa,

Canada from May 11-14

• KyivBSD, held in Kiev, Ukraine on September 24
• EuroBSDCon and Developer Summit, held in

Maarssen, Netherlands from October 6-9
• FreeBSD Vendor Summit, held in Santa Clara, CA

from November 3-4

In addition to sponsoring these conferences, the
Foundation paid for developers to attend the following
conferences:

• FOSDEM: 1 developer
• BSDCan: 6 developers
• EuroBSDCon: 6 developers
• GSoC Mentor Summit: 1 developer

Each sponsored developer provides a trip report that
indicates the value that was gained from their travel

FreeBSD
Foundation Update
The FreeBSD Foundation is a 501(c)(3) non-profit
organization dedicated to supporting and building the
FreeBSD Project and community worldwide. It represents
the FreeBSD Project in executing contracts, license
agreements, copyrights, trademarks, and other legal
arrangements which require a recognized legal entity.

12/2011 46

LET’S TALK FreeBSD Foundation Update

www.bsdmag.org 47

For 2012, the following conferences have confirmed a
FreeBSD booth with Foundation representation:

• SCALE, to be held in Los Angeles, CA on January 21
• NorthEast LinuxFest, to be held in Worcester, MA on

March 17
• Indiana LinuxFest, to be held in Indianapolis, IN on

April 14
• BSDCan, to be held in Ottawa, ON on May 11-12

It is expected that FreeBSD booths will be arranged at the
other conferences that were attended in 2011, once the
conference dates and locations have been confirmed.

Funded Development Projects
In 2011, the Foundation budgeted $125,000 to fund
development work. $85,000 worth of work has been
completed and two additional projects are being
considered for the remainder of the 2011 budget. The
following development projects have met their completion
milestones:

IPv6 support in FreeBSD and PC-BSD
Bjoern Zeeb, recipient of the Itojun Service Award for
his work on open source implementations of IPv6, was
awarded a grant to improve the maturity of IPv6 support in
FreeBSD and PC-BSD. This project was jointly sponsored

with iXsystems, the corporate sponsor of the PC-BSD
project.

FreeBSD’s original KAME-based reference
implementation of IPv6 first appeared in FreeBSD 4.0 and

is found in a broad range of FreeBSD-derived commercial
products. Before this project, IPv6 was an optionally
configured feature present in the default FreeBSD kernel;
however, that configuration also implied configuration of
IPv4. With much „IPv6-ready” application software relying
on dual-stack behavior, broken IPv6 applications go
unnoticed. This project added support for an IPv6 kernel
without IPv4 which makes FreeBSD and PC-BSD the ideal
test and development platform for both open source and
proprietary IPv6-aware application software.

This project was completed in time for both the FreeBSD
and PC-BSD projects to participate in World IPv6 Day,

held on June 8. IPv6-only versions of FreeBSD
(http://www.freebsd.org/ipv6/) and PC-BSD (http://
pcbsd.org/IPv6) are available.

Resource Containers Project
Edward Napierala was awarded a grant to implement
resource containers and a simple per-jail resource limits
mechanism.

sponsorship. Trip reports are available online at the
Foundation’s blog: http://freebsdfoundation.blogspot.com/.

Directors from the FreeBSD Foundation also volunteer
at FreeBSD booths at conferences that provide exhibition
areas. Visiting a FreeBSD booth provides an excellent
opportunity to discuss and suggest funded development
work as well as to make a donation to the Foundation. At
least one Director was present at the following conference
booths:

• FOSDEM, held in Brussels, Belgium on February 5-6
• SCALE, held in Los Angeles CA on February 26
• AsiaBSDCon, held in Tokyo, Japan from March 17-20
• Indiana LinuxFest, held in Indianapolis, IN on March

26
• FlourishConf, held in Chicago, IL on April 2
• BSDCan, held in Ottawa, Canada on May 13-14
• SouthEast LinuxFest, held in Spartanburg, SC on

June 11
• Ohio LinuxFest, held in Columbus, OH on September

10
• EuroBSDCon, held in Maarssen, Netherlands on

October 8-9
• LISA, to be held in Boston, MA on December 7-8

(upcoming)

http://www.freebsd.org/ipv6/
http://pcbsd.org/IPv6
http://pcbsd.org/IPv6
http://freebsdfoundation.blogspot.com/

12/2011 48

LET’S TALK FreeBSD Foundation Update

www.bsdmag.org 49

Unlike Solaris zones, the
implementation of FreeBSD
Jails did not provide per-jail
resource limits. As a result,
users were often forced

to replace jails with other
virtualization mechanisms. This

project created a single, unified
framework for controlling resource
utilisation, and used that framework

to implement per-jail resource limits.
In the future, the same framework
might be used to implement
more sophisticated resource
controls, such as Hierarchical
Resource Limits, or to implement
mechanisms similar to AIX WLM. It

could also be used to provide
precise resource usage
accounting for administrative
or billing purposes.

Implementing support of
GEM, KMS, and DRI for Intel
Drivers
Konstantin Belousov was awarded

a grant to implement support of GEM, KMS,
and DRI for Intel video drivers. This project was also co-
sponsored by iXsystems.

The project implemented GEM, ported KMS, and
wrote new DRI drivers for Intel Graphics, including the
latest Sandy Bridge generation of integrated graphic
units. Once the work is fully tested, it will be committed
and should allow the latest Intel open-source drivers
with integrated, 3D-accelerated graphical capabilities
to run on FreeBSD, expanding the range of hardware
where FreeBSD is suitable for the desktop. PC-BSD
testing snapshots that use the committed code are
expected to be available before the end of the first
quarter of 2012.

Feed-Forward Clock Synchronization
Algorithms Project
Julien Ridoux and Darryl Veitch at the University of
Melbourne were awarded a grant to implement support of
feed-forward clock synchronization algorithms.

For many years, NTP has been the reference solution
to synchronize computer clocks inexpensively. However,
the ntpd daemon has begun to show limitations which are
mainly due to the feed-back nature of its interaction with
the kernel.

In contrast, a feed-forward approach is inherently robust
and allows near-optimal performance to be reached. This
project extended the FreeBSD kernel timing system to
support feed-forward synchronisation daemons. This
new synchronisation system allows both feed-back and
feed-forward approaches to run on one system and give
users the possibility to select the one more suited to their
needs.

This feed-forward approach provides various new
features such as faster timestamping, a new difference
clock to measure time intervals with GPS-like accuracy
and extremely high robustness, the ability to replay
the clock offline based on stored raw timestamps,
and accurate timing for virtual machines and live VM
migration.

Implementing xlocale APIs
David Chisnall received a grant to implement xlocale APIs
to enable the porting of libc++.

FreeBSD has always had its own C standard library
implementation but uses the GPL-licensed GNU libstdc++
as the C++ standard library. libc++ is an alternative library
that was developed as part of the LLVM project and
which is available under the UIUC and MIT licenses.
This library depends on a low-level C++ ABI library. An
implementation of this ABI was written for PathScale and
the FreeBSD and NetBSD Foundations jointly paid the
costs for it to be open sourced.

The other dependency is the C standard library. libc++
was written by Apple and uses a set of non-portable
extensions for localisation known as xlocale. This project
implemented the missing xlocale APIs into FreeBSD’s
standard C library. Now that the project is complete, it is
possible to build libc++ on FreeBSD.

DIFFUSE
The Swinburne University of Technology’s Centre for
Advanced Internet Architectures was awarded a grant to
implement DIFFUSE for FreeBSD.

DIFFUSE (Distributed Firewall and Flow-shaper Using
Statistical Evidence) is an extension to the FreeBSD
IPFW firewall subsystem which allows IPFW to classify
traffic based on statistical properties of realtime flows
and to instantiate network actions across a distributed
set of action nodes for particular flows. DIFFUSE uses
machine learning techniques to enable robust and
efficient classification of IP traffic flows based on their
unique statistical properties in addition to traditional
inspection of packet header or payload contents.
DIFFUSE also allows traffic classification to occur in one
place (e.g. in the core of a network) and trigger traffic

12/2011 48

LET’S TALK FreeBSD Foundation Update

www.bsdmag.org 49

shaping and differentiation elsewhere (e.g. at the edges
of a network).

This project integrated the DIFFUSE prototype
into FreeBSD which will increase FreeBSD’s utility
to designers and implementers of FreeBSD-based
networking infrastructure. DIFFUSE has applications in
ISP, residential broadband, and large corporate network
scenarios.

Five New TCP Algorithms Project
Grenville Armitage was awarded a grant to implement five
new TCP congestion control algorithms.

Previous to this development work, FreeBSD’s TCP stack
did not have an easy-to-use mechanism for introducing
new congestion control algorithms. This project delivered
the following enhancements to FreeBSD’s TCP stack:

• Modular congestion control framework.
• Khelp (Kernel Helper) and Hhook (Helper Hook)

frameworks.
• Basic Khelp/Hhook integration with the TCP stack.
• ERTT (Enhanced Round Trip Time) Khelp module for

delay-based TCP algorithms.
• Modularised implementations of NewReno, CUBIC

and HTCP loss-based TCP algorithms.
• Modularised implementations of Vegas, „HD” and

„CHD” delay-based TCP algorithms.
• Technical report comparing the computational

overhead associated with TCP before and after
integrating the new frameworks and modularised
NewReno algorithm (http://caia.swin.edu.au/reports/
110228A/CAIA-TR-110228A.pdf).

Each congestion control algorithm is implemented as
a loadable kernel module. Algorithms can be selected
to suit the application/network characteristics and
requirements of the host’s installation. The modular
framework makes it much easier for developers to
implement new algorithms, allowing FreeBSD’s TCP to
be at the forefront of advancements in this area, while
still maintaining the stability of its network stack.

Other Projects
In addition to the development projects, the Foundation also
negotiated a non-exclusive copyright license to the libcxxrt
C++ runtime software from PathScale. This software is an
implementation of the C++ ABI originally developed for
Itanium and now used for the x86 family by BSD operating
systems. libcxxrt will be available under the 2-clause BSD
license. This implementation is a full replacement for the
GNU libsupc++ library for platforms that use the Itanium

C++ ABI, including i386 and x86-64, and will replace
portions of the C++ stack previously only available under the
GPL. It provides implementations of the dynamic features
of C++, including dynamic casting, exception handling, and
thread-safe static initializers, and will continue the gradual
replacement of GNU toolchain and runtime components,
furthering the aim of a purely BSD-licensed system.

The Foundation Needs Your Help!
The FreeBSD Foundation is entirely supported by
donations. The Foundation is thankful for the support it
receives from the many individuals and companies
who value FreeBSD. As of December 1, the
Foundation has
raised $201,000
towards its 2011
goal of $400,000.

You can help
us to reach our
fund raising goal of
$400,000 by the end
of December by making
a donation.

See http://www.freebsdf
oundation.org/donate/ for
details about the donation
process.

By helping the
Foundation meet its fund
raising goal, you are enabling
the Foundation to increase its
project development funding,
purchase needed equipment
for the FreeBSD project’s
infrastructure, and support more
FreeBSD related conferences.

DRU LAVIGNE
Dru Lavigne is author of BSD Hacks, The Best of FreeBSD Basics,
and The De�nitive Guide to PC-BSD. As Director of Community
Development for the PC-BSD Project, she leads the documentation
team, assists new users, helps to �nd and �x bugs, and reaches out to
the community to discover their needs. She is the former Managing
Editor of the Open Source Business Resource, a free monthly
publication covering open source and the commercialization of
open source assets. She is founder and current Chair of the BSD
Certi�cation Group Inc., a non-pro�t organization with a mission to
create the standard for certifying BSD system administrators, and
serves on the Board of the FreeBSD Foundation.

http://caia.swin.edu.au/reports/110228A/CAIA-TR-110228A.pdf
http://caia.swin.edu.au/reports/110228A/CAIA-TR-110228A.pdf
http://www.freebsdfoundation.org/donate/
http://www.freebsdfoundation.org/donate/

Next issue is coming in
January!

In the next issue:

- More about security for admis
- Highly loaded WEB servers
- OSPFv6
- and Other !

http://bsdmag.org/

�������������������������������������
��������������������������

���

���

��

����������������
����������������������������������

������������������������������������
��������������������������������

http://www.ixsystems.com/

	Cover

	Dear Readers

	Contents
	Google Code-In and FreeBSD’s participation

	Installing PC-BSD
on a Mac
	Keeping Your Configuration Files Shiny As New Using sysmerge(8)

	Rolling Your Own
FreeBSD Kernel
	OpenBSD 5.0: PHP, Cacti, and Symon

	Extracting Useful Information From Log Messages

	Anatomy of a FreeBSD Compromise (Part 1)

	Hardening BSD With Security Levels

