
http://www.iXsystems.com

http://www.iXsystems.com

http://www.iXsystems.com

01/20114

CONTENTS Contents

www.bsdmag.org 5

Zbigniew Puchciński
Editor in Chief

zbigniew.puchcinski@software.com.pl

Editor in Chief:
Zbigniew Puchciński

 zbigniew.puchcinski@software.com.pl

Contributing:
Anton Borisov, Joshua Ebarvia, Diego Montalvo, Francisco Reyes,

Eric Schnoebelen, Juraj Sipos, Rob Somerville, Petr Topiarz,
Sufyan bin Uzayr, Girish Venkatachalam

Art Director:
Ireneusz Pogroszewski

DTP:
Ireneusz Pogroszewski

Senior Consultant/Publisher:
Paweł Marciniak pawel@software.com.pl

National Sales Manager:
Ewa Łozowicka

ewa.lozowicka@software.com.pl

Marketing Director:
Ewa Łozowicka

ewa.lozowicka@software.com.pl

Executive Ad Consultant:
Karolina Lesińska

karolina.lesinska@bsdmag.org

Advertising Sales:
Zbigniew Puchciński

zbigniew.puchcinski@software.com.pl

Publisher :
Software Press Sp. z o.o. SK

ul. Bokserska 1, 02-682 Warszawa
Poland

worldwide publishing
tel: 1 917 338 36 31
www.bsdmag.org

Software Press Sp z o.o. SK is looking for partners from all over
the world. If you are interested in cooperation with us, please

contact us via e-mail: editors@bsdmag.org

All trade marks presented in the magazine were used only for
informative purposes. All rights to trade marks presented in the

magazine are reserved by the companies which own them.

The editors use automatic DTP system

Mathematical formulas created by Design Science MathType™.

Dear Readers!

January issue is out!

We begin from digging deeper into Rob Somerville’s
series of Drupal articles – Part 3.

As usual „How To’s” section offers us lots of useful
tutorials and ideas – like for example using BSD for
making USB stick, or setup a mail MX server.

In „Let’s Talk” we can find the main article written by
Petr Topiarz, and after that get a bit less serious with
Sufyan :).

I believe you will find this issue a promising start
into 2011. Please mail us with your feedback – we’re
always interested in your opinions regarding the
magazine.

Thank you!

01/20114

CONTENTS Contents

www.bsdmag.org 5

FreeBSD and simple char device driver
for real PCI-hardware
Anton Borisov

The FreeBSD operating system captivates the hearts and
minds of it’s fans so much, that finds it’s way in very diversive
industries such as hosting projects and backbone routers. It can
run on small embedded devices, as well as on large, multi-core
systems.

Let’s Talk
BSD’s and Solaris on the Desktop – Are
they ready to serve?
Petr Topiarz

Games Geeks Play!
Sufyan ibn Uzayr

In this article, we explore the various gaming options available
for the BSD users.

Why can’t office employees get along
with open source office suites?
Joshua Ebarvia

I have been working for 6 years now in an office setting. Since
the organization I work for does not have that “big” funds for
purchasing bleeding-edge software, we put our hands on some
open source counterparts of the proprietary ones.

Writing ‘bots using XMPP
Eric Schnoebelen

One of my favorite topics, using XMPP/Jabber for productive,
real world applications!

How to quickly make a bootable USB
stick with FreeBSD
Juraj Sipos

This article covers the steps needed to make a bootable USB
stick with FreeBSD – a quick howto that also applies to a USB
drive.

Get Started
Drupal on FreeBSD – part 3
Rob Somerville

Continuing the series on the Drupal Content Management
System, we will look at creating a store front for our new website
using CCK and Views.

How To’s
Email MX server in FreeBSD
– Configuring FreeBSD as a mail MX
server with Postfix
Francisco Reyes

This is a tutorial on how to setup a mail MX server using
Postfix.

18 Installing NGINX and PHP 5.3.x on
FreeBSD 8.1
Diego Montalvo

Have been using Apache as my default web server on FreeBSD
servers since departing from IIS 4.0 and NT systems in 1999.
Apache has always performed great on my installations and give
the Apache Foundation great praise.

20 Text Terminal magic with tmux
Girish Venkatachalam

Once you get used to something you seldom like to go back to
old ways. So much so that you get uncomfortable without it.

06
22

14

18

36

28

42

46

20

36

01/2011 6

GET STARTED Drupal on FreeBSD – Part 3

www.bsdmag.org 7

Traditionally with standard HTML pages, content
was written either in an editor or generated by a
WYSIWYG (What You See Is What You Get) web

design tool such as Dreamweaver. With the increased
complexity and size of websites, managing sites using
this technique rapidly became very problematic, and
a number of technological advances were offered
in response to this problem. From a technological
perspective it is important to separate content from style,
and this was achieved using CSS (Cascading Style
Sheets) which is an extremely powerful way of allowing
the the same content to be displayed in a variety of
ways (See CSS Zengarden References). Compared
to the overhead involved editing individual documents,

this overcame the limitations of embedding styles within
content, and allowed the web developer to re-skin a
website by changing the centralised CSS or dynamically
at the click of a button.

This did not address the problem of how to quickly
modify content that is common across a website (for
instance a common document footer that contains
company name and contact details) or provide access

Drupal on FreeBSD

Continuing the series on the Drupal Content Management
System, we will look at creating a store front for our new
website using CCK and Views.

Part 3

What you will learn…
• How to expand Drupal with custom content and views

What you should know…
• Basic BSD system admin skills and how to install/administer Dru-

pal CMS (Parts 1 & 2)

Figure 1. Default Drupal Content types Figure 2. Adding a new content type

01/2011 6

GET STARTED Drupal on FreeBSD – Part 3

www.bsdmag.org 7

database, the web-server and the GUI for managing
the content itself that the Content Management System
really came into its own from the end user perspective.
One major stumbling block in providing dynamic fresh
websites was finally overcome – how to provide the
functionality that allowed the user inexperienced in
writing code to rapidly update content and style without
technical knowledge.

However, early CMS’s still had a major limitation
– while generating an individual page is relatively
trivial, generating custom content from a DB is not so
straightforward. The opposite problem than the HTML

to disparate database content as the original HTML
standard did not offer this. Server Side Includes and
languages such as Perl, PHP etc. solved the problem, but
development time and cost was required to truly make a
website dynamic. It was not until the integration of the

Figure 3. The new Product content type

Figure 4. Adding a custom �eld

Figure 5. The 5 custom �elds added Figure 6. The new Product content type

Table 1. Default content types

Image Used for displaying images or Figures

Page “Static” content that will not have any comments or
postings, e.g. an about us page

Story Ideal for informative content, e.g. press releases, news
etc. that requires user feedback via comments.

Table 2. Content Type de�nition

Group Field Value
Identi�cation Name Product

Type product

Description Custom content
for our product
line.

Submission Form
Settings

Minimum number of
Words

25

Explanation or
submission guidelines

Add new
products using
this template

Work�ow
Settings

Published Disabled

Promoted to Front Page Disabled

Create New Revision Enabled

Comment
Settings

Default Comment
Settings

Disabled

01/2011 8

GET STARTED Drupal on FreeBSD – Part 3

www.bsdmag.org 9

style issue occurred – the database content is too
loosely coupled. For instance, a product list on a widget
website could have a page for each widget type, and a
custom summary page listing each widget, description
and cost etc. The end user would have to manage the
content for each widget and any changes to the cost
would have to be reflected in summary page as well.
If they forgot to update the summary or widget page,
the information would be inaccurate. The traditional
approach to this would be for developer to write custom
code to allow the user to input each widget attribute into
a database, and write a custom page to dynamically pull
this centrally stored data out. If in the future though,
the user required an additional field (e.g. a waterproof
widget) the developer would need to be consulted to
make the modifications to both the template and the
underlying code.

Drupal provides two very powerful modules, CCK (Content
Construction Kit) and Views that allows the developer or
webmaster to quickly generate custom content types for
holding and displaying user defined database fields without

coding – such as our widget product line. In this tutorial,
we will build a crude non-production storefront teaser for
Widgets.com, displaying a detailed description page for
each widget and a summary page with images, description,
price etc. In reality, a production e-commerce system would
utilise a product such as Ubercart and Drupal, but as the
shopping cart output format is so ubiquitous this was used
as an example.

Required modules
The CCK, Views and ImageField and FileField modules
need to be installed and enabled.

Creating a new content type
Drupal by default provides the following content types
(Figure 1).

We will create a new content type called Product. Once
logged into Drupal as Administrator, Navigate to Home
» Administer » Content management » Content types
and click on Add Content Type (Figure 2) and complete
the fields as detailed. Click on the Group hyper-link to
expand the options as required.. Save, then click on the
manage fields link and add the new fields saving each
field in turn and adding additional values as desired.
(Table 1-2 Figure 3-5).

Figure 7. Input validation failed

Figure 8. Newly created Widgets view

Figure 9. Settings, Fields and Filters con�gured

Figure 10. Non-waterproof �lter in default view preview

01/2011 8

GET STARTED Drupal on FreeBSD – Part 3

www.bsdmag.org 9

Creating content
Once you have defined the custom field types, visit Home
» Create content and add some new Product pages. If you
omit vital information, or try to input incorrect information
(e.g. a widget that has zero cost) you should get an error
message (Figure 6-7).

Displaying the content using views
Visit Home » Administer » Site building » Views and
create a new view with the parameters in Table 4 . (Figure
8). Click on Add or Update to commit each field change,
save to commit the entire view. Sort the fields view order
by clicking on the up and down arrow then click and drag
each item to re-order. The automatic live preview should
be enabled by default, so you should see your results up
until you add the last filter (Figure 9-10). If the preview
is not displayed automatically, click on Preview. The last
filter (marked in red) prevents unpublished content being
exposed to visitors, and as we have disabled publishing
the product nodes by default no storefront items will
be available until they are authorised. This would be
required in in a production environment, an email could
be sent to webmaster on a product node commit by an

Table 3. Field de�nitions

Label Field Name Field Type Widget Additional Values
Product Type product_type Text Select List Help text Demonstration product types for our storefront. As

we are only selling widgets, we will only have one
item here but this is included for future expansion.

Required Enabled

Allowed
Values List

widget|Widget

Product
Type

Widget – Note Field type needs to be saved �rst to
display this value

Product
description

product_desc Text Text �eld Required Enabled

Product Image product_image File Image Required Enabled

Minimum
Resolution

320x240

Waterproof product_
waterproof

Text Checkboxes /
radio buttons

Help text Is this product waterproof?

Allowed
values list

Y|Yes
N|No

Default
value

No

Required Enabled

Cost product_cost Float Text �eld Required Enabled

Minimum 1

Maximum 99,99

Pre�x £

Figure 11. Un�ltered page preview

Figure 12. Block preview

01/2011 10

GET STARTED

end user to allow editorial control. For the purposes of
the tutorial this filter can be omitted, but regardless of
this the correct view permissions will need to be added
for the following fields:

• field _ product _ cost

• field _ product _ desc

• field _ product _ image

• field _ product _ type

• field _ product _ waterproof

which is found under Home » Administer » User
management. Please resist the temptation to give
unauthorised users access to all views, this may mean
fewer mouse clicks, but it would potentially create a

Figure 13. Final Page view for Widgets

Table 4. Views settings

Views Parameters
View name Widgets

View
Description

All widgets available on
widgets.com

Group Field Value Additional Values
Basic settings Title Widgets for sale

Style Table Page access options: access content

Use pager Full pager

Row Style Field

Header Get your widgets here

Empty text Sorry – there are no items available to view.

Access Access restrictions: Permission
*Access

Filters + All Content: Product Type (�eld_product_type) Is equal to widget

Groups: Node Published Enabled

Fields + Content Content: Cost (�eld_product_cost)
Content: Product Image (�eld_product_image)
Content: Product description (�eld_product_desc)
Content: Waterproof (�eld_product_waterproof)

Enabled
Enabled
Enabled
Enabled

Content: Product Image Format Image

Link this �eld to its node Enabled

Style: table * Field Product description – Sortable
Waterproof – Sortable
Cost – Sortable

Enabled
Enabled
Enabled

Filters + Groups: Content: Waterproof (�eld_product_waterproof) –
Allowed values

Expose
Label: Display Waterproof Widgets?

Groups: Node Published Enabled

Figure 14. Final Block view for Widgets

Drupal on FreeBSD – Part 3

www.bsdmag.org 11

security risk by overriding the more granular field level
security.

We now have a default framework for our view, but this
is not much use on its own so from it we will now create
2 displays, a Page and a Block. The Page view is what
visitors will see as our storefront landing page, and the
Block will display our widget descriptions and cost teaser.
To do this:
• Add a Page and Block display.
• Add the path widgets _ for _ sale to the Page view.
• Override the default field views for block and exclude

the following from being displayed:
• Content: Product Image field

a d v e r t i s e m e n t

Figure 15. Published product pages Figure 16. Widget product teaser block

• Content: Waterproof field
• Content: Cost fields

• Add Widget List to the block under Block: Block admin
description.

• Finally, under Fields Content: Product Default enable
Output field as Link and change the path to widgets _

for _ sale for the Block view.

http://www.rootbsd.net

01/2011 12

GET STARTED

This will redirect the user to our storefront when they
click on the product. The resulting previews and view
settings can be seen here (Figure 11-14).

Adding the block to the front page
Now that we have a cut down list of our widgets, we
need to display this to our visitors on the front page. To
do this, navigate to Home » Administer » Site building
and add Widget list to the right sidebar of the Danland
theme. Change the block title to <none> and change Show
on only the listed pages to <front>. Finally, navigate to
Home » Administer » Content management and publish
all Product pages (Figure 15).

ROB SOMERVILLE
Rob Somerville has been passionately involved with technology
both as an amateur and professional since childhood.
A passionate convert to *BSD, he stubbornly refuses to shave
off his beard under any circumstances. Fortunately, his wife
understands him (she was working as a System/36 operator
when they �rst met). The technological passions of their
daughter and numerous pets are still to be revealed.Figure 18. Product page showing Widget 1 content

Figure 17. Product landing page with �lter and sort

On the ‘Net
• CSS Zen Garden http://csszengarden.com
• W3C CSS pages http://www.w3.org/Style/CSS/
• Ubercart http://www.ubercart.org

We should now have the following functionality (Figure
16-18):

1. The ability to add a custom widget product with a
mandatory image, with strong input validation, a
minimum description length of 25 words and a custom
field that defines if the Widget is waterproof with
automatic smart URLs (e.g. http://mysite/content/
widget-1), revisions that doesn’t automatically publish
and the ability to easily expand the product types

2. A custom cost field that accepts and displays sterling
amounts between £1 and £99.99

3. A limitation on the size of product image uploaded
4. A Product teaser block on our front page linking

directly to our basic storefront sortable by description
and cost

5. A landing page accessible via the smart URL
http://mysite/widgets_for_sale that allows the
user to display all widgets, waterproof widgets or
non-waterproof widgets and sort by description,
functionality or cost that links through to the widget
product pages via the image.

To Do

1. Modify the CSS for widgets page to display more
cleanly

2. Add links to the Product description field on the
widgets content page

3. Add thumbnails to the teaser

http://bsdmag.org

01/2011 14

HOW TO’S Email MX server in FreeBSD

www.bsdmag.org 15

What is a mail MX server and why would you
want one?
On my article on the January 2010 edition I covered how
to setup a mail machine capable of receiving mail and
letting the user connect to get his mail. For a small mail
setup that would be enough, however for a busy domain
or a group of domains it may be better to separate the load
across many machines for performance and redundancy.

The function of a mail MX server is to receive mail from
outside sources and to forward the mail to the appropriate
server. In addition to contributing to capacity having MX
servers allow for more flexible scenarios such as the
possibility to have the mail server, using POP or IMAP, to
be closed off from the Internet to allow only internal users
(although that is not a common setup).

Unless otherwise instructed do the work as user root.
We will need to use the port system. If you are new

to it check chapter 4 (http://www.freebsd.org/doc/
en_US.ISO8859-1/books/handbook/ports.html) of the
hankdbook.

A MX server is able to act as a backup or as the primary
machine to collect mail for domains. In this article I will
cover both.

Initial Notes
For this article we will be setting up a MX server for
<MyDomain> and the server will have <ExternalIP> as it’s

external IP. Replace with your actual domain and with the
actual machine’s external IP.

Although a MX server could potentially connect to a
database to read values, in this article I will discuss only
how to configure the server by reading local files. The
benefit of using a database to read the configurations
would be the ability to control many machines from
a single location; the primary drawbacks would be
performance and the possibility of the database becoming
a single point of failure.

This tutorial installs the postfix port in batch mode,
however if you like you can remove the BATCH=yes and do
the installs in interactive mode. Be aware that if you do the
port install in interactive mode any pre-requisite ports will
also be run in interactive mode.

Installing the Postfix port
#cd /usr/ports/mail/postfix

#make WITH_TLS=yes BATCH=yes install clean

#rehash

The TLS option is needed if you plan to support TLS
in the future for higher level of security. Although not
covered in this article, if you believe you may need to
secure email transmissions in the future then it doesn’t
hurt to have the support already there. See the links
section for more info on TLS and how to use it in Postfix.

Email MX server in FreeBSD

This is a tutorial on how to setup a mail MX server using
Postfix.

Configuring FreeBSD as a mail MX server with Postfix

What you will learn…
• What is a mail MX server
• The two most common types of MX servers
• How to setup a mail MX server

What you should know…
• Basic DNS concepts
• How to become root

01/2011 14

HOW TO’S Email MX server in FreeBSD

www.bsdmag.org 15

Backup MX
A backup MX machine is the simplest MX configuration; it
uses DNS to know to what machine to forward mail to.

MX records have a value and a domain. The lower the
value the higher the priority.

Using one of my domains as an example see Listing 1.
In the example above mail will first try to go to

mail.natserv.com, then backupmx.natserv.com and
finally tarbaby.junkemailfilter.com. The Backup MX in the
above case is backupmx.natserv.com. If the primary mail
server, mail.natserv.com, was ever down mail will go to
the backup machine and remain there for a few days until
the primary server came back up. The amount of time the
backup holds the mail for the primary is configurable.

The entry tarbaby.junkemailfilter.com is related to anti-
spam measures and I will explain in the section on spam.

The Postfix configuration file is /usr/local/etc/postfix/
main.cf. Change the entire main.cf as follows see Listing
2.

The list of domains that you allow your backup server to
relay for will be in the relay_domains file. Edit /usr/local/
etc/postfix/relay_domains to look like

domain1

domain2

The vast majority of spam targets non existing users. In
order to prevent the MX server forwarding emails to non
existing users we put the list of email addresses in /usr/
local/etc/postfix/relay _ recipients

After Postfix is installed we need to configure it and
disable sendmail. To disable sendmail,the default MTA
that comes with FreeBSD, and enable postfix at startup
we need to edit /etc/rc.conf by adding:

sendmail_enable=”NO”

sendmail_submit_enable=”NO”

sendmail_outbound_enable=”NO”

sendmail_msp_queue_enable=”NO”

postfix_enable=”YES”

Disable some sendmail specific daily maintenance by
editing /etc/periodic.conf and placing the following

daily_clean_hoststat_enable=”NO”

daily_status_mail_rejects_enable=”NO”

daily_status_include_submit_mailq=”NO”

daily_submit_queuerun=”NO”

Configure Postfix as the system mailer. Edit /etc/mail/
mailer.conf as follows:

#

Execute the Postfix sendmail program, named /usr/local/

sbin/sendmail

#

sendmail /usr/local/sbin/sendmail

send-mail /usr/local/sbin/sendmail

mailq /usr/local/sbin/sendmail

newaliases /usr/local/sbin/sendmail

Listing 1. Listing MX DNS entries for a domain

>dig mx natserv.com

; <<>> DiG 9.6.1-P2 <<>> mx natserv.com

;; global options: +cmd

;; Got answer:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 34424

;; flags: qr rd ra; QUERY: 1, ANSWER: 3, AUTHORITY: 0, ADDITIONAL: 0

;; QUESTION SECTION:

;natserv.com. IN MX

;; ANSWER SECTION:

natserv.com. 28800 IN MX 0 mail.natserv.com.

natserv.com. 28800 IN MX 5 backupmx.natserv.com.

natserv.com. 28800 IN MX 10 tarbaby.junkemailfilter.com.

01/2011 16

HOW TO’S Email MX server in FreeBSD

www.bsdmag.org 17

user1@domain.com x

user2@domain.com x

user3@domain.com x

user4@domain.com x

The value of the second parameter is not relevant; it can
be anything.

Notice we listed the recipient list in the main.cf as hash:
/usr/local/etc/postfix/relay_recipients. That means we are
using a binary form of the file to speedup lookups. You
need to run postmap against any file that is in hash form
by calling postmap like

#postmap /usr/local/etc/postfix/relay_recipients

We did not do a hash for the list of domains because
it is usually a much smaller list. The list of users can
potentially have hundreds or thousands of entries. Also,
different postfix lists can accept hash or a simple lists.
Some accept one, but not the other; some accept both.

To finish our initial setup we create an alias file (needed
by postfix, even if you don’t plan to change it), stop
sendmail and start postfix

#newaliases

#/etc/rc.d/sendmail stop

#rehash

#postfix start

To test postfix is running

telnet localhost 25

You should see a prompt

Trying 127.0.0.1...

Connected to < your host name >

Escape character is ‘^]’.

Use CTRL+], the type quit.

Edge MX
If the final destination mail server will not be listed in DNS
then the MX servers need to have another way to indicate
where to send the emails. One way to accomplish this is
using a transport. In the main.cf we add:

#transport maps

transport_maps = hash:/etc/postfix/transport

In /etc/postfix/transport we add:

<domain> smtp:<final.server.com>

A more concrete example. If we removed entry 0 from
the DNS MX entry list above we could have an entry in
the transport file like:

natserv.com smtp:mail.natserv.com

Listing 2. Post�x main.cf �le

relay_domains =/usr/local/etc/postfix/relay_domains

smtpd_recipient_restrictions =

 permit_mynetworks ,

 reject_unauth_destination,

 reject_unlisted_recipient,

 reject_rbl_client hostkarma.junkemailfilter.com=127.0.0.2,

 reject_rbl_client zen.spamhaus.org,

 reject_rbl_client dnsbl-1.uceprotect.net,

 reject_rbl_client ix.dnsbl.manitu.net,

 reject_rbl_client bl.spamcop.net,

 reject_rbl_client psbl.surriel.com,

 reject_rbl_client ubl.unsubscore.com

You must specify your NAT/proxy external address.

proxy_interfaces =

relay_recipient_maps = hash:/usr/local/etc/postfix/relay_recipients

01/2011 16

HOW TO’S Email MX server in FreeBSD

www.bsdmag.org 17

Note that I used a hash file so don’t forget to do: postmap
/etc/postfix/transport.

Any domain you list in the tranport file, needs to have
the domain listed in /usr/local/etc/postfix/relay_domains
and each user listed in /usr/local/etc/postfix/relay_

recipients.

Anti-spam measures
As you may have noted, in the smtpd_recipient_restrictions
of the main.cf we have lines like:

 reject_rbl_client hostkarma.junkemailfilter.com=127.0.0.2,

 reject_rbl_client zen.spamhaus.org,

 reject_rbl_client dnsbl-1.uceprotect.net,

 reject_rbl_client ix.dnsbl.manitu.net,

 reject_rbl_client bl.spamcop.net,

 reject_rbl_client psbl.surriel.com,

 reject_rbl_client ubl.unsubscore.com

Those are RBLs (Real Time Black lists). Using RBLs is
one of the simplest ways to reduce spam, however it is
possible to block some valid emails so it is important to
not use any RBLs that are overly aggressive. The list I
have used has proven to have a good balance in my own
usage.

Some RBLs have restrictions on commercial usage and
large volume usage, so if you are going to use an RBL in
a commercial or large volume setting you may need to
check with the rules and regulations of the RBL.

In the DNS entry for natserv.com I have tarbaby.junk
emailfilter.com in the lowest priority entry. This entry is
an anti-spam measure run by project tarbaby(see links
section). The MX entry will not accept any emails, but will
look for signs that a smtp server is trying to send spam.
The tarbaby server ends the connection by telling the
sending server that it can not accept the mail. Any well
behaved smtp server will try a higher priority MX server.
Many spammers do not honor the MX records, so if
spammer connects only to the tarbaby server you reduce
your spam. Furthermore, even if a server honors MX, but
is recognized by the tarbaby server as sending spam it
gets added to the tarbaby RBL.

FRANCISCO REYES
Francisco Reyes is a system administrator and DBA in NY City. He
writes at http://adminlibre.com.

You may wonder why would a server connect to the
lowest priority server in the MX order. This is something
spammers do often because many mail setups have
configured their MX servers in a less secure fashion than
their primary servers so spammers sometimes are able
to get more spam through by going to the lower priority
MX servers. Whenever you setup MX servers you need
to make sure your backup MX servers have the same,
or higher, anti-spam measures than your primary mail
server. As an example compare my RBL list for the
domain natserv.com in the MX compared to the actual
primary machine.

MX RBL list

 reject_rbl_client hostkarma.junkemailfilter.com=127.0.0.2,

 reject_rbl_client zen.spamhaus.org,

 reject_rbl_client dnsbl-1.uceprotect.net,

 reject_rbl_client ix.dnsbl.manitu.net,

 reject_rbl_client bl.spamcop.net,

 reject_rbl_client psbl.surriel.com,

 reject_rbl_client ubl.unsubscore.com

Primary machine RBL list

 reject_rbl_client hostkarma.junkemailfilter.com=127.0.0.2,

 reject_rbl_client zen.spamhaus.org

Notice how I have significantly more RBL servers in
the MX machine. My primary machine is very stable
and rarely ever is down so rarely ever valid mail needs
to go through it. I am able to have stronger anti-spam
measures in the backup MX than in the primary server.
The 2 RBLs I have listed in the primary have a good ratio
of blocking spam, but not blocking valid emails. Some of
the other RBLs I list in the MX are more aggressive and
have a higher chance of blocking valid emails so I don’t
use them in the primary server.

On the ‘Net
• http://www.post�x.org/ – Post�x web site
• http://www.networkworld.com/newsletters/gwm/0329

gw1.html – How can TLS increase e-mail security?
• http://www.post�x.org/TLS_README.html – Post�x TLS

support
• http://wiki.junkemailfilter.com/index.php/Project_tarbaby

 – Project TarBaby

01/2011 18

HOW TO’S

This article is one of trying a newly popular web server, not a migration tool away from Apache . Lately
have read alot about NGINX so decided to install it as the default web server for a new web service I am
developing.

I did find some helpful tutorials on the Internet, but most dealt with PHP 5.2.x or older. After hours of searching and
chatting with other folks it turns out 5.3.x already comes compiled with FastCGI by default.

Using PHP 5.3.x allows you to skip several steps from existing 5.2.x tutorials. No need to install and configure „spawn-
fcgi” or other plug-ins since FastCGI is compiled with php 5.3.x

Installing NGINX on FreeBSD is as simple as installing any other port but does take some tweaking in order for it to
work correctly with PHP.

Installing NGINX and PHP 5.3.x

Have been using Apache as my default web server on
FreeBSD servers since departing from IIS 4.0 and NT
systems in 1999. Apache has always performed great on my
installations and give the Apache Foundation great praise.

on FreeBSD 8.1

What you will learn…
• How to con�gure NGINX and PHP 5.3.x on FreeBSD

What you should know…
• How to install ports and edit con�guration �les

Installing PHP 5.3 via FreeBSD Port
cd /usr/ports/lang/php5

It is very important to choose the Build FPM version which
includes the FastCGI Process Manager.
make install clean

Wait for installation to complete.
ee /etc/rc.conf

Type the following: php_fpm_enable=”YES”

Save

shutdown -r now

Upon reboot you will have a successful installation of PHP
5.3.x on your FreeBSD system.

01

Installing NGINX and PHP 5.3.x on FreeBSD 8.1

www.bsdmag.org 19

Testing Configuration
cd /usr/local/www/your-dir

ee info.php

Type the following:
<?php

phpinfo();

?>

Save

FPM/FastCGI is your Server API DIEGO MONTALVO
Diego Montalvo is a web/ mobile application developer
which has developed web services such as buildasearch.com,
bobchatter.com, urloid.com, pressoid.com and many others.
Diego is currently leaving out of a suitcase exploring Mexico.
Feel free to contact Diego at diego@earthoid.com

On the ‘Net
• http://www.php.net/
• http://wiki.nginx.org/
• http://www.apache.org/

Installing NGINX via FreeBSD Port
cd /usr/ports/www/nginx

As recommended in other tutorials install the following
modules (you may need additional modules for your
specific installation:
HTTP_MODULE

HTTP_REWRITE_MODULE

HTTP_SSL_MODULE

HTTP_STATUS_MODULE

make install clean

02

Configuring NGINX for PHP Handling
In order for NGINX to properly handle PHP files you will
have to configure the nginx.conf file.
cd /usr/local/etc/nginx/

ee nginx.conf

Begin by editing your server information.

03

After NGINX is done installing and compiling you may
want to automatically start the web server when FreeBSD
boots up.
ee /etc/rc.conf

Type the following: nginx_enable=”YES”

 Save

shutdown -r now

Upon reboot you will have a successful installation of
NGINX on your FreeBSD system.

Next uncomment the section in brown and modify the
directory settings to match your web directory. (Figure 3)

04

NGINX 0.8.53 successfully installed as web server.
(Figure 5)

01/2011 20

HOW TO’S Text Terminal magic with tmux

www.bsdmag.org 21

Tmux is one such tool
Anybody working in the UNIX world for a long time
would have heard of GNU Screen, a form of terminal
multiplexing which is a way by which you can use one
console for multiple parallel sessions. This can be thought
of as a text mode window manager which allows you to
create infinite shells/terminals.

Screen has a multi view mode in which multiple people
can collaborate and do a sort of conferencing in which
what one types is seen by others.

This can be priceless for remote debugging sessions.
GNU Screen also has an uncanny ability to double

up as a nohup for all the commands you run. So when
there is a network outage or a machine crash, as long
the UNIX server is up and running your command goes
to completion.

This is in stark contrast to other situations that can be
quite painful.

The other convenience is that of attaching and
detaching. You can fire up a set of commands and detach
and logout. You can login and attach to see what is going
on.

Several time taking operations like download/
uploads(Bittorrent) and logfile monitoring can be done
this way.

But GNU Screen has been around for a long time and
tmux is a new comer. Tmux is a massive improvement

on screen having evolved and learnt from past mistakes
as is the case with most software programs in the UNIX
world.

Tmux is a pleasant piece of software that is welcome
in the BSD world since its license is the liberal and
meaningful BSD license. This allows it to be part of
OSes like OpenBSD without requiring the user to install a
separate package as is the case with GNU Screen.

This is very important since now you can rely on any
OpenBSD system having tmux by default and you can
write your programs to use it without fear.

Before we get to the nitty gritty of tmux let us take a look
at a picture.

What you see here is a picture of tmux in action.You can
find multiple panes here(4) and also two windows.

You can switch between them of course and type
commands and the screens refresh automatically if you
are monitoring something like network bandwidth using
ifstat or bwm-ng or disk performance with iostat or system
monitoring with systat.

You can also have fancy clocks and so on.
It takes a little while to get the hang of tmux particularly

when you have not heard of Screen. Tmux has got a huge
list of commands but we will focus on the most useful
ones for the moment.

Every tmux command is prefixed with [Ctrl-b]. This can
be changed but let us say that you as a beginner might

Text Terminal magic with
tmux
Once you get used to something you seldom like to go
back to old ways. So much so that you get uncomfortable
without it.

What you will learn…
• You will �gure out how to improve your productivity by a big

factor in the most useful part of UNIX viz, the command line.
Your creativity will expand and so will your efficiency and effec-
tiveness of using UNIX.

What you should know…
• Reasonable experience with UNIX command line and shell inte-

raction. No need for shell scripting knowledge. Basic command
over the command line and few tools that are commonly used in
the command line would suffice.

01/2011 20

HOW TO’S Text Terminal magic with tmux

www.bsdmag.org 21

prefer not to change this. For instance you can create a
new window by using [Ctrl-b+C]. It is [Ctrl-B] and then [c].
[c] stands for create.

You can create a few windows and switch back and
forth using [Ctrl-B+n] or [Ctrl-B+p]. [n] stands for next and
[p] for previous.

I normally just stick to a certain pattern. It cycles so you
don’t have to worry. Eventually you will get the window
you want.

Tmux also has a status display line which can be set
with the command in ~/.tmux.conf

set-option -g status-bg red

You can use yellow, green or blue if you want in place of
red.

This line shows what command is running on each
window.

This can be immeasurably useful since most of the time
a particular utility/shell command invokes several other
commands behind the scenes and we can see all that
with tmux.

You can split a window into panes by using two
commands for two ways of splitting a window into panes.

[Ctrl-b+„] for splitting horizontally and [Ctrl-b+%] for
splitting windows into vertical panes.

You can cycle between the panes in a Window by using
[Ctrl-B+o].

In fact you choose a window by using [Ctrl-B+n], then if
a window has many panes you cycle between them using
the above mentioned command.

Windows themselves are quite useful and fun; now
panes are even better.

You can bind a key obviously entered after the prefix
key sequence [Ctrl-B] and tmux will execute it for you

everytime you press the hotkey sequence.
You can also store it in a config file.

For instance, if you want to fire up a video
everytime you press a key sequence in tmux,
you only have to do this.

Ctrl-B+:

Enter this in the colon prompt a la vi.

: bind-key 4 run-shell „mplayer ~/videos/

foo.mpg”

Now all you have to do to invoke this
command is press

Ctrl-B + 4

By storing this in ~/.tmux.conf you are saving yourself a lot
of trouble.

Also by putting tmux in ~/.profile.
Tmux has got a paste buffer which is something I took a

long time to discern.
The paste buffer is accessed using the [Ctrl-B+[] key

combo.
Then you simply press Page UP and Page Down keys.

Once you are done just type [q].
You can detach from a tmux session by typing

Ctrl-b +d

You can then logout and go to some other part of the
world and then attach to the same session by typing.

$ tmux attach

Other people who login as you can attach to a tmux you
are running thereby enabling them to see what you are
typing and vice versa.

Tmux is overall a very cool tool and the more you use it,
the more you grow to love it.

Just the way UNIX has always been...

GIRISH VENKATACHALAM
Girish has close to 15 years of UNIX experience and he loves
OpenBSD more than he loves anything else in the technology
world.

Figure 1. tmux-pane

01/2011 22

HOW TO’S Writing ‘bots using XMPP

www.bsdmag.org 23

XMPP isn’t just for instant messaging. XMPP can be
used for any messaging or presence application.
Due to XMPP’s well documented, standardized

nature, it is relatively easy to create robots to handle
almost any remote control task you might imagine.

Remotely controlled programs have earned the
nickname ‘bot. So, we’ll be building some bots managed
by XMPP. And we’ll be building them using one of the
‘net’s current favorite scripting languages, python.

‘bots can do almost anything their programmers desire
them to do, like any program. The interesting things about
‘bots is they can be controlled by someone elsewhere,
frequently via email, or more recently, instant messaging.

Over the years, ‘bots have been developed to handle
tasks such as retrieving ftp-able files via email, managing
mailing lists via email.

Web applications for managing mailing lists, and other
activities could also be considered ‘bots. The only limit is
your imagination.

Getting Ready
We’ll start by gathering together all the needed
prerequisites.

Since we’re working with Python, we’ll need a Python
interpreter, version 2.5 or newer.

Next up is xmpppy, which requires python’s expat (part
of the distribution tarball) and dnspython.

The final component is the python jabberbot module. All
of the python modules can be installed from pkgsrc{,-wip}
(wip/py-jabberbot, wip/py-xmpppy, net/py-dns, textproc/
py-expat, lang/python2.6.) If you do install out of pkgsrc,
installing wip/py-jabberbot will install all the required
components.

Installing manually is pretty standard python install
incantation:

 <code>python setup.py install</code>

See the Listing 1 for URL’s of all the needed pieces. (and
a few others we’ll also make use of..)

Lets build a ‘bot!
Our first ‘bot will be something very simple. A simple bot
that does nothing more than send a greeting when a user
says hello to it, and gives some basic system information.
This is a very stripped down, partially reimplemented,
version of the system status bot that is on the jabberbot
home page.

One important, and perhaps less than obvious task, is
to create an id on the jabber/xmpp server to use. Create
the account as you would any jabber/xmpp account, with
your favorite agent.

Using the jabberbot package to create ‘bot’s is pretty
straight forward. You subclass the JabberBot class, and

Writing ‘bots using

One of my favorite topics, using XMPP/Jabber for
productive, real world applications!

XMPP

What you will learn…
• How to write a XMPP robot
• How to send an XMPP message from the UNIX command line

What you should know…
• How to install python packages
• How to establish an account on a XMPP server

01/2011 22

HOW TO’S Writing ‘bots using XMPP

www.bsdmag.org 23

(JID.) get_sender_username requires an argument of the
message structure that each function receives.

Our final function definition in lines 27-31 is the
moral equivalent of whoami(1). It uses two functions
from xmpppy, getFrom(), which returns the sender of
the message from the xmpppy XMPP object (which
has both the JID and the resource), and getStripped(),

then implement the functions/keywords you want to be
recognized, by marking the function definition with the
prefix @botcmd on the preceding line. The function name
itself is the command name.

 The function signature must include three arguments.
The first argument is the class object itself (self). The
second argument is a XMPP message object from
xmpppy (class xmpp.) The final argument is a list of words
that followed the keyword in the message text.

This bot, sysinfo.py, has four commands, demonstrating
how to return our results to the client, and using three of
the JabberBot provided functions.

Dissecting the source, the first 4 lines are boiler plate
to make sure we have the correct modules loaded to do
everything we want to do.

Lines 33-34 define the jabber id and password to use.
Line 35 creates the bot, and signs in. Line 36 starts the
bot, and has it running until the end of time (or you send
SIGINT, which ever comes first.)

The real work happens in lines 6 through 31, where
we define the functions for the commands we are
implementing. Lines 8-15 are the most complex,
requesting information from the posix module about the
system, turning it into a string to return to the client. As is
evident, the string returned from the @botcmd function is the
string returned to the XMPP client.

Lines 17-20 return the servers current date and time, in
it’s own time zone.

Lines 22-25 use JabberBot’s get_sender_username()
function to get the username portion of the Jabber ID Figure 1. Talking to sysstat@cirr.com

Listing 1. Source URLs

jabberbot

 home page: http://thp.io/2007/python-jabberbot/

 source: http://thp.io/2007/python-jabberbot/jabberbot-0.10.tar.gz

eliza

 home page: http://www.jezuk.co.uk/cgi-bin/view/software/eliza

 source: http://www.jezuk.co.uk/files/eliza.py-0.2.tar.gz

xmpppy

 home page: http://xmpppy.sourceforge.net/

 source: http://downloads.sourceforge.net/sourceforge/xmpppy/xmpppy-0.5.0rc1.tar.gz

dnspython

 home page: http://www.dnspython.org/

 source: http://www.dnspython.org/kits/1.8.0/dnspython-1.8.0.tar.gz

01/2011 24

HOW TO’S Writing ‘bots using XMPP

www.bsdmag.org 25

which operates on an xmpppy JID object, returning the
bare JID.

If you want to play with it immediately, feel free to contact
sysstat@cirr.com. See Figure 1 for example output.

A second ‘bot is an implementation of the classic
Eliza quasi-AI program. For those unfamiliar with Eliza,
it accepts questions and statements from the user, and
responds in a fashion someone like a psychologist.

Listing 2. sysinfo.py

 1 #! /usr/pkg/bin/python2.6

 2 from jabberbot import JabberBot, botcmd

 3 import datetime

 4 import posix

 5

 6 class SystemInfoJabberBot(JabberBot):

 7 @botcmd

 8 def serverinfo(self, mess, args):

 9 """Displays information about the

server"""

 10 ldavg = posix.getloadavg()

 11 uinfo = posix.uname()

 12

 13 resp = 'load: %0.2f %0.2f %0.2f\n\n' % ldavg

 14 resp += 'uname: %s %s %s %s %s' % uinfo

 15 return resp

 16

 17 @botcmd

 18 def time(self, mess, args):

 19 """Displays current server time"""

 20 return str(datetime.datetime.now())

 21

 22 @botcmd

 23 def hello(self, mess, args):

 24 """ Says hello to you"""

 25 return 'Hello %s' % self.get_sender_

username(mess)

 26

 27 @botcmd

 28 def whoami(self, mess, args):

 29 """Tells you your username"""

 30 return 'You are %s (aka %s)' % \

 31 (mess.getFrom(), mess.getFrom().getStr

ipped())

 32

 33 username = 'sysstat@cirr.com'

 34 password = '****************'

 35 bot = SystemInfoJabberBot(username,password)

 36 bot.serve_forever()

Listing 3. doctor.py

 1 #! /usr/pkg/bin/python2.6

 2 from jabberbot import JabberBot, botcmd

 3

 4 import posix

 5 import eliza

 6

 7 class Doctor(JabberBot):

 8

 9 def __init__(self, username, password,

res=None, debug=False):

 10 self.__doctor = eliza.eliza()

 11 # call the parent class initializer

 12 JabberBot.__init__(self, username, password,

res, debug)

 13

 14 def unknown_command(self, mess, cmd, args):

 15 # handle unknown (all) commands

 16 return self.__doctor.respond('%s %s' % (

cmd, str(args)))

 17

 18 @botcmd

 19 def about(self, mess, args):

 20 """ tells a bit about eliza """

 21 reply = 'Dr Eliza is an XMPP robot

implementation based around '

 22 reply += 'an algorithm originally implemented

by by Joseph '

 23 reply += 'Weizenbaum which simulates

a therapist.'

 24 return reply

 25

 26 @botcmd

 27 def hello(self, mess, args):

 28 """ trys a different way to get the JID """

 29 return 'Greetings %s' % mess.getFrom().getStr

ipped()

 30

 31 username = 'doctor@cirr.com'

 32 password = '***************'

 33 bot = Doctor(username, password)

 34

 35 bot.serve_forever()

01/2011 24

HOW TO’S Writing ‘bots using XMPP

www.bsdmag.org 25

xmpppy distribution. Using xsend.py, shell scripts can
easily send a message to an administrator or multi-user
conference room for easy monitoring/management.

xsend.py requires a JID/password to use as a sender
(which is configured via a ~/.xsend file), and then can send
a message from the command line. The first argument
is the JID to send the message to, and the rest of the
command line is the message to send. By default, it sends
all messages as type message (as opposed to type chat,
which is used for interactive messaging.) Use it like this:

 xsend.py root@example.com ‘Example.org is not responding!’

Wrapping up
There are a multitude of ways to use XMPP beyond the
obvious use of Instant Messaging. Using ‘bots with XMPP
is a wonderful way to step up automated communications
between programs, systems and people.

Other uses of an XMPP ‘bot that I’ve considered are
RSS feed readers (which I will be implementing after I
finish writing this article), dynamic DNS updater (imagine
being able to send the DNS updates via XMPP, perhaps
with a somewhat specialized client, instead of using
something like DynDNS), and goodness knows what else.
Please, share any ideas you may have with the author,
and the community at large!

Look for an rss feed reader (any feed) at xmpp:
rss@cirr.com in the near future. I’m going to have fun
figuring out how to make it work!

To do so, we’ll need to install the eliza.py module. It uses
the standard setup.py mechanism. Do that now.

Since we Eliza need to respond to arbitrary messages
from the user, we need to overload/replace it’s unknown
command handler. By doing so, any text we don’t only
otherwise recognize/handle is passed along to the eliza
text processor/handler. Let’s take a look a the source in
Listing 3.

For the Eliza bot, the __init__ function of JabberBot had
to be overloaded to permit the initialization of the eliza
module. Once the eliza module has been initialized, it
needs to initialize the rest of the JabberBot module by
calling the super-class initializer.

The other major difference from our other ‘bot is the
addition of the unknown_command handler. unknown_command()
converts the command line into a single string, which
is passed to the eliza module’s response generation
function. And eliza’s response is then handed back to the
person connected.

Feel free to talk to the doctor as doctor@cirr.com. Figure
2 contains a sample session with Dr Eliza.

Going the other way
XMPP can also be used to have applications send status
messages and perhaps ask someone what the application
should do.

Perhaps the simplest way for a system to send status
messages is using the xsend.py script included in the

ERIC SCHNOEBELEN
Eric Schnoebelen is a 25+ year veteran of the UNIX wars, using
both System V and BSD derived systems. He’s spent more than
20 years working with and contributing to various open source
projects, such as NetBSD, sendmail, tcsh, and jabberd2. He
operates a UNIX consultancy, and a small, NetBSD powered
ISP. His preferred OS is NetBSD, which he has running on Alpha,
UltraSPARC, SPARC, amd64 and i386.
He can be reached via xmpp as eric@cirr.com.Figure 2. A conversation with Dr Eliza

01/2011 26

HOW TO’S

www.bsdmag.org

Install FreeBSD, or use an existing FreeBSD installation,
and follow these steps:
1) First, you need to prepare and format your USB

stick:

fdisk -BI /dev/da0

bsdlabel -B -w da0s1

newfs -U -O1 /dev/da0s1a

boot0cfg -v -B da0

(-U -O1 [O like in Olympus, not zero] is for UFS1 which
provides much faster copying than UFS2; if you decide
for UFS2, type -U -O2 – but expect that the copying will
be slower)

2) Then mount it: mount /dev/da0s1a /usb
3) Copy all directories (FreeBSD) to the stick
4) After copying, modify the /usb/boot/loader.conf

(explained below)
5) In the /boot directory on your USB stick you must

have MFS (Memory File System – mfsroot.gz), which you
will make (instructions are below)

6) Modify your /etc/fstab in MFS and put the following
line (only) there: /dev/md0 / ufs rw 0 0

7) After you boot your computer with the stick, you will
be in the MFS environment from which you will mount
your USB stick with mount_nullfs (described below)

Modification of /boot/loader.conf on your USB stick
You must have the following lines in your /boot/loader.conf
(some lines are optional):

mfsroot_load=”YES”

mfsroot_type=”mfs_root”

mfsroot_name=”/boot/mfsroot”

nullfs_load=”YES”

splash_bmp_load=”YES”

vesa_load=”YES”

geom_uzip_load=”YES”

geom_label_load=”YES”

bitmap_load=”YES”

bitmap_name=”/boot/splash.bmp”

snd_driver_load=”YES”

kern.maxfiles=”25000”

kern.maxusers=”64”

vfs.root.mountfrom=”/dev/md0”

Additional filesystem drivers

udf_load=”YES”

linux_load=”YES”

fuse_load=”YES”

ntfs_load=”YES”

ext2fs_load=”YES”

reiserfs_load=”YES”

How to quickly make a

This article covers the steps needed to make a bootable USB
stick with FreeBSD – a quick howto that also applies to a USB
drive.

What you will learn…
• How to make a bootable USB stick/disk with FreeBSD

What you should know…
• Booting with MFS gives more freedom

bootable USB stick with FreeBSD

01/2011 26

HOW TO’S

www.bsdmag.org

Making your own MFS
FreeBSD, after the kernel boots, can use the root file
system in memory (mfsroot_load=”YES” command in /boot/
loader.conf will do the trick). To build such a memory file
system, type the command: dd if = /dev/zero of = mfsroot
bs = 1024k count = 42. The mfsroot file of about 40 MB in
size will be created. You need to format it, mount it and
copy the most important files into it from your FreeBSD
system (/bin, /sbin, /etc, /root….):

mdconfig -a -f mfsroot md0

newfs /dev/md0

mount /dev/md0 /mnt

Once copied, you must unmount it and gzip it: gzip
mfsroot
Optionally, you can chroot it to see if everything works,
then copy the mfsroot.gz to /usb/boot onto your USB flash
drive (or disk). If you think it may be a problem to pick the
most important files for your MFS (from your FreeBSD
installation), search for mfsbsd in Google and either
use its toolset or the MFS image alone (contained in the
downloadable ISO of mfsbsd).

After booting from the USB stick (you will jump into
MFS), you must mount the physical USB stick:

/sbin/mount -o ro /dev/da0s1a /usb

/sbin/mount_nullfs /usb/boot /boot

/sbin/mount_nullfs /usb/usr /usr

The above commands will help you use the big /usr
directory on your USB stick instead of the /usr dir in
MFS. mount _ nullfs /usb/boot /boot is optional, as in your
MFS/boot directory only the following files are needed for
the little MFS to boot (/boot/kernel directory in MFS):
geom _ label.ko, geom _ uzip.ko, zlib.ko a their debug
symbols (zlib.ko.symbols, etc.). By mounting the /usb/boot
dir via mount _ nullfs into the /boot directory in your MFS
you will be able to load kernel modules.

JURAJ SIPOS
Juraj lives in Slovakia, where he works in a library (in an
educational institute). He has been writing and selling computer
articles for over ten years. He wrote an xmodmap howto
(www.faqs.org/docs/Linux-mini/Intkeyb.html) and in addition to
computers he is also interested in spirituality, but not really the
guru side of things, but more-so freedom and self-actualization.
His website says more: www.freebsd.nfo.sk.

http://bsdmag.org

01/2011 28

HOW TO’S FreeBSD and simple char device driver for real PCI-hardware

www.bsdmag.org 29

And sometimes, can be used in rather unusual state
– for instance, to monitor several statuses of PC
that is equipped with PCI POST card. We’ll show

today how it can be achieved.

Into the groove
System engineers usually begin acquainted with new
hardware from a bottom line, in other words from
low-level, firmware level. It applies either to non x86-
architecture, as well as to x86, particularly to IBM PC-
compatible machines. The latter ones are known to have

a frimware naming like PC BIOS. Climbing from a bottom
line, higher to a top, system engineer functionally and
logically transforms to a high-level language programmer.
Where architectural processes for complex systems take
places. Unfortunaly, modern trends in IT shows very
clearly the following: young professionals knows very
well how to program nice UI, but completely unsure what
is hidden under such terms like low-level programming
and x86 BIOS calls. It’s a pity, because, either low-level
procedures, as well as BIOS calls are used every time
to start a box with FreeBSD. Let’s make a short trip into
bootstrapping process for conventional x86-based PC.

First, when power cord is plugged and a power button
is pressed, starts CPU. Almost immediately, RAM chips
are initialized. Control vector is transferred to the following
RAM address: 0xFFFF0, or 0xFFFF.FFF0. Both addresses are

FreeBSD and simple char

The FreeBSD operating system captivates the hearts and minds
of it’s fans so much, that finds it’s way in very diversive industries
such as hosting projects and backbone routers. It can run on
small embedded devices, as well as on large, multi-core systems.

device driver for real PCI-hardware

Figure 1. IC80+ PCI POST card allows to visualize 0x80 / 0x81 ports
contents Figure 2. After BIOS initialization here comes BTX loader

What you will learn…
• How to program kernel character device driver
• How to use PCI POST card to visualize system’s events

What you should know…
• PCI-subsystem of x86-compatible PC
• How to manipulate with sysinstall, make and gcc
• Basic knowledge of how FreeBSD kernel works

01/2011 28

HOW TO’S FreeBSD and simple char device driver for real PCI-hardware

www.bsdmag.org 29

ISA- and PCI-bus, or malfunctioning USB-port, which fails
to initialize properly. Here comes diagnostic equipment,
like POST (Power-On Self Test) card. It’s mission is to
show you on seven-segment LED display what’s wrong.
All you need is to have a list of POST-codes by your side,
in order to figure out, what’s exactly component failed.

IC80 POST-Card from IC Book Labs
I’ve searched thoroughfully marketplace to find out,
what is difference exist between all these POST-cards.
There is about a dozen different manufacturers – from
eminent grandees, to noname cards, made somewhere
in Guangdong province, PRC. Some developers provide
a detailed desciption, manuals, and have a tech-support
line, others only have look-alike printed circuit board.
Since, I pefer to deal with a product, that offers a maximum
number of features, I’ve chosen a POST-card from IC
Book Labs [1] company. As it turned out, I made a right
decision – more than 10 years of development, support
for AMIBIOS, AwardBIOS, PhoenixBIOS, InsydeBIOS.
Dual diagnostic LED-display that shows contents of virtual
ports 0x80 / 0x81 / 0x84 / 0x1080 / 0x2080. There’s also
a switch, that allows to go through all POST step-by-step.
A really swiss knife.

Though it’s price differs from nonamed product by a
factor of 10, it provides more features by the same factor.
Anyway, let’s get started.

correct, because x86-compatible processor after first
initialization must be in so-called real-mode state. At
that time, memory address space from 0xE0000 to 0xFFFFF
is occupied by FlashROM. Where such procedures like
initializations of various PC-components (RS232, LPT,
USB) are stored.

In addition to the mentioned physical ports, each PC-
system holds a virtual diagnostic port 0x80. PC BIOS (for
example, AwardBIOS or PhoenixBIOS) sends into this
port specifical values upon start of each init-procedure,
so it can be just immediately been scanned by diagnostic
equipment (we talk about it later). And finally, PC BIOS
tunes then interrupt vectors (0x13, 0x18, 0x19) to have
an ability to bootstrap an operating system – from a floppy
disk, USB device, or ATA/SATA/SCSI device, in particular
the interrupt vectors int

All these procedures are written in assembly-language
and therefore it is assumed that resulting binary code is
optimal in terms of execution time by CPU.

If all subsystems are functioning properly, PC BIOS will
set up int 0x19 vector, so that BTX Loader could start.
Which in turn would load whole FreeBSD system. All these
things, we’ve discussed so far, are stored inside firmware
(aka PC BIOS for x86 architecture). And if you woke up in
the morning, and see your FreeBSD box doesn’t want to
boot – it could be a hardware error. Unidentified visually
by PC BIOS, because it can be burned capacitor between

Listing 1. pciconf shows attached devices to system

[root@a-bsd ~]# pciconf -l

hostb0@pci0:0:0:0: class=0x060000 card=0x464c8086 chip=0x27708086 rev=0x02 hdr=0x00

vgapci0@pci0:0:2:0: class=0x030000 card=0x464c8086 chip=0x27728086 rev=0x02 hdr=0x00

none0@pci0:0:27:0: class=0x040300 card=0xd6048086 chip=0x27d88086 rev=0x01 hdr=0x00

pcib1@pci0:0:28:0: class=0x060400 card=0x00000000 chip=0x27d08086 rev=0x01 hdr=0x01

pcib2@pci0:0:28:2: class=0x060400 card=0x00000000 chip=0x27d48086 rev=0x01 hdr=0x01

pcib3@pci0:0:28:3: class=0x060400 card=0x00000000 chip=0x27d68086 rev=0x01 hdr=0x01

uhci0@pci0:0:29:0: class=0x0c0300 card=0x464c8086 chip=0x27c88086 rev=0x01 hdr=0x00

uhci1@pci0:0:29:1: class=0x0c0300 card=0x464c8086 chip=0x27c98086 rev=0x01 hdr=0x00

uhci2@pci0:0:29:2: class=0x0c0300 card=0x464c8086 chip=0x27ca8086 rev=0x01 hdr=0x00

uhci3@pci0:0:29:3: class=0x0c0300 card=0x464c8086 chip=0x27cb8086 rev=0x01 hdr=0x00

ehci0@pci0:0:29:7: class=0x0c0320 card=0x464c8086 chip=0x27cc8086 rev=0x01 hdr=0x00

pcib4@pci0:0:30:0: class=0x060401 card=0x464c8086 chip=0x244e8086 rev=0xe1 hdr=0x01

isab0@pci0:0:31:0: class=0x060100 card=0x464c8086 chip=0x27b88086 rev=0x01 hdr=0x00

atapci0@pci0:0:31:1: class=0x01018a card=0x464c8086 chip=0x27df8086 rev=0x01 hdr=0x00

atapci1@pci0:0:31:2: class=0x01018f card=0x464c8086 chip=0x27c08086 rev=0x01 hdr=0x00

ichsmb0@pci0:0:31:3: class=0x0c0500 card=0x464c8086 chip=0x27da8086 rev=0x01 hdr=0x00

re0@pci0:1:0:0: class=0x020000 card=0x00018086 chip=0x816810ec rev=0x02 hdr=0x00

none1@pci0:4:0:0: class=0x118000 card=0x00000000 chip=0x001cb00c rev=0x05 hdr=0x00

01/2011 30

HOW TO’S FreeBSD and simple char device driver for real PCI-hardware

www.bsdmag.org 31

Boot sequence
I’ve inserted this IC80 POST card into free PCI-slot and
pushed a power button. My mainboard was produced by
Intel (D945GCLF2), so I referred to POST-codes that this
manufacturer reserved for it’s products [2]. Complete
startup sequence for all initialization procedures was as
follows:

22, 23, 25, 28, 34, 12, 58, 50, 51, EB, 58, 92, 90, 94,

95, BB, B8,

BA, 5A, 92, 90, 94, BB, BA, EB, BB, BA, 5A, BB, BA, E7,

E9, and finally 00

• 22 – Reading SPD from memory DIMMs
• 23 – Detecting presence of memory DIMMs
• 25 – Configuring memory
• 28 – Testing memory
• 34 – Loading recovery capsule
• 12 – Starting Application processor initialization
• 58 – Resetting USB bus
• 50 – Enumerating PCI busses
• 51 – Allocating resources to PCI bus
• EB – Calling Legacy Option ROMs
• 58 – Resetting USB bus
• 92 – Detecting presence of keyboard
• 90 – Resetting keyboard
• 94 – Clearing keyboard input buffer

• 95 – Instructing keyboard controller to run Self Test
(PS2 only)

• BB – reserved by Intel
• B8 – Resetting removable media
• BA – Detecting presence of a removable media (IDE,

CD-ROM detection, etc.)
• 5A – Resetting PATA/SATA bus and all devices
• ...
• E7- Waiting for user input
• E9 – Entering BIOS setup
• 5A – Resetting PATA/SATA bus and all devices
• BA – Detecting presence of a removable media (IDE,

CD-ROM detection, etc.)
• 00 – Ready to boot

After last event (ID: 00) boot control is passed to BTX
Loader and the usual bootstrapping for FreeBSD begins
(see Figure 2).

FreeBSD system is up
After all necessary services enlisted in rc.conf are
completed, we can log into FreeBSD and see, how the
POST device looks like (in terms of the operating system
of course. See Listing 1).

We see all integrated devices, including video- and
network-card. And there are 2 strange devices for which
there is no loaded driver: none0@pci0:0:27:0 and none1@pci0:

Listing 2. More advanced information for devices with 'unloaded' driver

[root@a-bsd ~]# pciconf -lv | grep none -A3

none0@pci0:0:27:0: class=0x040300 card=0xd6048086 chip=0x27d88086 rev=0x01 hdr=0x00

 vendor = 'Intel Corporation'

 device = 'IDT High Definition Audio Driver (BA101897)'

 class = multimedia

--

none1@pci0:4:0:0: class=0x118000 card=0x00000000 chip=0x001cb00c rev=0x05 hdr=0x00

 vendor = 'IC Book Labs'

 device = 'IC80+PCI POST Diagnostics Card'

 class = dasp

Listing 3. FreeBSD contains no driver for IC80+PCI POST
Diagnostics Card

[root@a-bsd ~]# dmesg | grep pci4

pci4: <ACPI PCI bus> on pcib4

pci4: <dasp> at device 0.0 (no driver attached)

Listing 4. Make�le for sample kernel driver 'hello_world'

KMOD= hello_world

SRCS= hello_world.c

.include <bsd.kmod.mk>

01/2011 30

HOW TO’S FreeBSD and simple char device driver for real PCI-hardware

www.bsdmag.org 31

Listing 5. Source �le for sample kernel driver 'hello_world'
#include <sys/types.h>

#include <sys/param.h>

#include <sys/module.h>

#include <sys/sysproto.h>

#include <sys/sysent.h>

#include <sys/kernel.h>

#include <sys/systm.h>

/*

 * The function for implementing the syscall.

 */

static int

hello (struct thread *td, void *arg)

{

 printf ("hello kernel world\n");

 return 0;

}

/*

 * The 'sysent' for the new syscall

 */

static struct sysent hello_sysent = {

 0, /* sy_narg */

 hello /* sy_call */

};

/*

 * The offset in sysent where the syscall is allocated.

 */

static int offset = NO_SYSCALL;

/*

 * The function called at load/unload.

 */

static int

load (struct module *module, int cmd, void *arg)

{

 int error = 0;

 switch (cmd) {

 case MOD_LOAD :

 printf ("Driver loaded at %d\n", offset); /* logging to syslog */

 uprintf ("Driver loaded at %d\n", offset); /* logging to terminal */

 break;

 case MOD_UNLOAD :

 printf ("Driver unloaded from %d\n", offset); /* logging to syslog */

 uprintf ("Driver unloaded from %d\n", offset); /* logging to terminal */

 break;

 default :

 error = EOPNOTSUPP;

 }

 return error;

}

SYSCALL_MODULE(hello_world, &offset, &hello_sysent, load, NULL);

01/2011 32

HOW TO’S FreeBSD and simple char device driver for real PCI-hardware

www.bsdmag.org 33

Listing 6a. Source �le for kernel driver 'ic80'

#include <sys/types.h>

#include <sys/module.h>

#include <sys/systm.h> /* uprintf */

#include <sys/errno.h>

#include <sys/param.h> /* defines used in kernel.h */

#include <sys/kernel.h> /* types used in module

initialization */

#include <sys/conf.h> /* cdevsw struct */

#include <sys/uio.h> /* uio struct */

#include <sys/malloc.h>

#include <sys/types.h>

#define BUFFERSIZE 5

/* Function prototypes */

static d_open_t ic80_open;

static d_close_t ic80_close;

static d_read_t ic80_read;

static d_write_t ic80_write;

/* Character device entry points */

static struct cdevsw ic80_cdevsw = {

 .d_version = D_VERSION,

 .d_flags = D_PSEUDO | D_NEEDGIANT,

 .d_open = ic80_open,

 .d_close = ic80_close,

 .d_read = ic80_read,

 .d_write = ic80_write,

 .d_name = "ic80",

};

typedef struct s_ic80 {

 char msg[BUFFERSIZE];

 int len;

} t_ic80;

static struct cdev *ic80_dev;

static int count;

static t_ic80 *ic80msg;

MALLOC_DECLARE(M_IC80BUFFER);

MALLOC_DEFINE(M_IC80BUFFER, "ic80buffer", "a buffer

for ic80 post card kernel module");

static int

{

 int err = 0;

 switch (what) {

 case MOD_LOAD:

 ic80_dev = make_dev(&ic80_cdevsw, 0, UID_ROOT,

GID_WHEEL, 0666, "ic80");

 ic80msg = malloc(sizeof(t_ic80), M_IC80BUFFER,

M_WAITOK);

 printf("Driver IC80 loaded\n");

 break;

 case MOD_UNLOAD:

 destroy_dev(ic80_dev);

 free(ic80msg, M_IC80BUFFER);

 printf("Driver IC80 unloaded\n");

 break;

 default:

 err = EOPNOTSUPP;

 break;

 }

 return(err);

}

static int

ic80_open(struct cdev *dev, int oflags, int devtype,

struct thread *p)

{

 int err = 0;

 printf("Opening device \"ic80\" ...\n");

 return(err);

}

static int

ic80_close(struct cdev *dev, int fflag, int devtype,

struct thread *p)

{

 printf("Closing device \"ic80\" ... \n");

 return(0);

}

/*

 * The read function just takes the buf that was saved

via

 * echo_write() and returns it to userland for

accessing.

 * uio(9)

 */

01/2011 32

HOW TO’S FreeBSD and simple char device driver for real PCI-hardware

www.bsdmag.org 33

4:0:0. Let’s start pciconf in more verbose mode: see
Listing 2.

Excellent! The first device for which there is no driver
has been loaded – an integrated Intel HD audio device.
What about the second one? This is our POST-card.
Make sure once again, that no single driver was loaded
for it during bootstrap process (see Listing 3).

Actually, the functionality of this card is quite simple – to
display on LED0 and LED1 display what has been sent to
diagnostic ports 0x80 and 0x81. And I’m quite sure, we’re
able to write necessary software for it. Well, we’re moving
to the next section!

Designing simple char-device driver
As an example let’s first analyze how to program a very
simple kernel driver. It’s mission is to write to syslog and
terminal a message Driver loaded, once it’s registered by
system. And once the kernel module is unregistered by
system, it should write Driver unloaded. This will be a truly
Hello, world!, but with kernel background.

But first, please make sure that the following packages
are installed on the system: gcc, make, kernel sources, and
share sources. Usually, the first 2 packages are already
present in system. You only need to install the latter two.
Run sysinstall and install the following packages:

sysinstall->Configure->Distributions->src->share

sysinstall->Configure->Distributions->src->sys

The good starting point for writing a kernel driver from
scratch is to look at: /usr/src/share/examples/kld/syscall/
module/syscall.c.

And, it would be also worth to look at this page [3] – with
explanation about module structure (see Listing 4 and
Listing 5).

Start compilation process:

 # make

And now we load module into kernel address space:

Listing 6b. Source �le for kernel driver 'ic80'

static int

ic80_read(struct cdev *dev, struct uio *uio, int

ioflag)

{

 int err = 0;

 int amt;

 /*

 * How big is this read operation? Either as big

as the user wants,

 * or as big as the remaining data

 amt = MIN(uio->uio_resid, (ic80msg->len - uio-

>uio_offset > 0) ?

 ic80msg->len - uio->uio_offset : 0);

 if ((err = uiomove(ic80msg->msg + uio->uio_offset,

amt, uio)) != 0) {

 uprintf("uiomove failed!\n");

 }

 return(err);

}

static int

ic80_write(struct cdev *dev, struct uio *uio, int

ioflag)

{

 int err = 0;

 /* Copy the string in from user memory to kernel

memory */

 err = copyin(uio->uio_iov->iov_base, ic80msg->msg,

4);

 /* Now we need to null terminate, then record the

length */

 *(ic80msg->msg + 4) = 0;

 ic80msg->len = 4;

 if (err != 0) { uprintf("Write failed: bad

address!\n"); }

 count++;

 outb(0x80, strtol(ic80msg->msg, 0, 16));

 return(err);

}

DEV_MODULE(ic80,ic80_loader,NULL);

01/2011 34

HOW TO’S

 # kldload ./hello_world.ko

Is it really there?

 # dmesg | grep Driver

 hello_world loaded at 210

Okay, the driver functions correctly. You can unload it
from memory like that:

 # kldunload hello_world

We got now a very simple driver. Our next step is to add
more functionality, i.e. a driver must be able to create
character device under /dev/ tree, and it also must be
able to visualize any value of hexadecimal type on the
LED0-display of the POST-card.

The latter procedure is done by sending hex value to
diagnostic port 0x80. Yes, that’s easy (see Listing 6).

One short comment about this source. We create
a structure named ic80_cdevsw, where we place the
functions, that will be called upon access a character
device /dev/ic_80. For example, upon every close, open,
write or read operation.

static struct cdevsw ic80_cdevsw = {

 .d_version = D_VERSION,

 .d_flags = D_PSEUDO | D_NEEDGIANT,

 .d_open = ic80_open,

 .d_close = ic80_close,

 .d_read = ic80_read,

 .d_write = ic80_write,

 .d_name = „ic80”,

};

Inside ic80 _ loader() function we program the mechanism,
how the module should be registered, and unregistered
by operating system. Within ic80 _ write() function the

value for diagnostic port 0x80 is passed from user-space
land to kernel and send directly to port 0x80. Internal
buffer ic80msg shouldn’t be very long, because it should
store 5 characters only.

Driver is ready. Now, when you load it into the kernel
address space it will register a new character device
/dev/ic80, with permissions 0666 and owned by root:
wheel. After that you can send any value in 0xXX format
(for example, 0xAB) into /dev/ic80 and it will be displayed
on LED0-screen. I’ve decided to control system average
load, and prepared the following script. Once it is
started by user, and once your CPU is heavy loaded,
the immediate change of LED0-indicator is guaranteed.
My tough and heavy CPU loader job was performed
with help of burnMMX utility (from /usr/ports/sysutils/burn
package).

Actually, you can display on LED0-indicator whatever
information you need. Values should be in range between
0x00 and 0xFF. For instance, it could be a temperature,
either of CPU, or mainboard. Moreover, don’t forget about
LED1-indicator – you can enhance the kernel driver in
order to show twice as more information.

Conclusion
As you can see, designing a character driver is not as
difficult as it seems. It can be fun sometimes, especially
if you have very unusual hardware and FreeBSD by your
side. And you also have a desire to combine them both
into one amazing solution. Anyway, I’m sure that every
novice FreeBSD user has a potential to create something
possible from impossible pieces. Just like any FreeBSD
guru, isn’t it?

On the ‘Net
• http://en.icbook.com.ua/ [1]
• http://www.intel.com/support/motherboards/desktop/sb/

CS-025434.htm [2]
• http://www.redantigua.com/c-ex-kernel-freebsd-hello.html

[3]

Listing 7. System load value is pushed to new char device

#!/bin/sh

 while true;

 do

 sleep 1s;

 id='top -d 1 | grep load | awk '{ print $6 }' |

head -c 4 | tail -c 2';

 echo $id > /dev/ic80;

 done

ANTON BORISOV
The very �rst Anton’s experience with UNIX was FreeBSD. It was
TWM, wget and Netscape Communicator. Many things have
changed greatly since then, but a true simplicity remained
unchanged – The Power to Serve. That’s why Anton chooses
FreeBSD for ‘impossible’ missions.

http://www.FreeBSDMall.com

01/2011 36

LET’S TALK BSD’s and Solaris on the Desktop – Are they ready to serve?

www.bsdmag.org 37

The tested systems were FreeBSD 8.1, NetBSD
5.1, OpenBSD 4.8 and 4.7, OpenIndiana (fork of
OpenSolaris). They were all latest stable versions,

except for OpenIndiana, which was Solaris build 148 only
in pre-release stage.

Some people might be interested why I omitted PC-
BSD or Desktop-BSD in the testing, if they are actually
Desktop-ready solutions.

The reason is, I do not want to test various customised
distributions, I wanted to compare and test the systems
with their default tools.

I also have to admit, I find stuff like PC-BSD very
monstrous and sluggish, absolutely unfit for an office
solution, where the desktop has to be clean, simple and
fast, if I should use KDE for office use, then only the
simple and fast KDE3.

I was also not interested in the ease of install, since
I believe, offices have IT-people for that, office workers
usually do not install systems, printer drivers and
such.
Desktop Features
What does desktop use mean?
For many users it can be many things, but I was focused
on what we can describe as a small office use. The office
I run has three full time office workers who work most
of the day on the computer, one is an accountant, who
runs MS Windows in a virtualised window, as we use

a version of accounting that does not have a version
for Linux and if run in Wine, it frequently freezes. We
occasionally have to take some photos from the mobile
phone and send it over Internet. We have Ethernet
network, but one of our colleagues works part of the
week from her home and I go for meetings to various
places, so we often use either wireless or ppp over
phone – here bluetooth comes handy. We often scan
contracts or other documents. Multimedia make our time
nicer, so I teseted them too. I believe, many other users
do similar work with their computers at home or at their
offices. So that leads me to conclusion, people might be
interested, how things actually work.

Hardware
Tested hardware was various brands, so I believe this will
not be seen as promoting some hardware

• Dell Optiplex 755 desktop, Acer TravelMate 8471
laptop, Fujitsu-Siemens S6120D laptop

• HP LaserJet 4, Samsung ML1510 Laser printer,
Canon Pixma MP190 (multifunctional), HP F-2480
Deskjet (multifunctional)

• intel video and audio integrated cards
• network Ethernet 10/100 PCI cards of various make,

Intel cards on laptops
• wireless network

BSD’s and Solaris on the Desktop
Are they ready to serve?

What you will learn…
• How do they compare?
• How extensive hardware support they

offer.
• Which software you can use.

You will not learn...
• How to install the systems or software.

For understanding this article...
• You can be a beginner Linux user, or an

advanced BSD admin, each will learn his
part.

As I am a great unix fan, I use BSD daily, but I mainly use
the beast on the servers. In my company, we run Linux on
Desktops and I would like to change that too. Therefore
I underwent this venture in order to see whether Unix is
ready to replace Linux on the desktop or not.

01/2011 36

LET’S TALK BSD’s and Solaris on the Desktop – Are they ready to serve?

www.bsdmag.org 37

scanners at all. OpenIndiana is also missing the HPLIP
package that would give gear to Sane to manage the HP
multifunctional Scanner.

FreeBSD was a clear winner here. It printed to
everything and at the same time it scanned with both the
scanners.

And not only did it scan, unlike the other BSDs it even
scanned and printed at the same time – without rebooting
into the ulpt0-disabled recompiled kernel. Good work
gentlemen!

NetBSD has a very outdated HPLIP package, so it failed
with HP-F-series printer, however with Pixma it printed
well after recompiling gutenprint using with-cups option.
NetBSD found both the scanners after recompiling kernel,
but failed to work with them completely.

NETWORKING, WIRELESS, BLUETOOTH
Bluetooth worked very well with NetBSD, OpenBSD and
FreeBSD, and connected through ppp0 and SonyEricsson
mobile to the Internet.

All possible tested Ethernet cards worked on all
systems – which is a huge improvement for OpenIndiana
concerning the fact that Solaris was very weak at this
point just two years ago.

Intel wireless worked reliably only on OpenBSD after
downloading the binary from a designated page.

VIDEO and AUDIO
I have to say I had no major problems with either sound
or video drivers on any of the PCs with any of the BSDs.
Sometimes some tweaking was neccessary, but mainly
adjusting mixerctl, nothing like recompiling drivers or
similar. OpenIndiana on the Siemens lifebook laptop

• bluetooth phone connection
• USB thumb 128M, 2G, 8G with vfat FS
• SonyEricsson mobile phone C510

Software

• Desktop environment with auto-mounting
• Performance
• OpenOffice
• PDF reader
• web browser with flash plug-in
• Virtualization (for applications which need other, often

closed-source and evil, operating system environment)
• Multimedia (just for curiosity)

Hardware match
PRINTING
All the systems tested were able to print to the old
HP laser printer, all the BSDs were able to print to the
Samsung laser using the Splix package. There was no
native Splix package for OpenIndiana, however there is a
simple tutorial how to compile the package from sources
on OpenSolaris forums. It was different with the two
multifunctional machines.

OpenBSD didn’t print on Canon Pixma, although it had
the driver. It was very strange, since with a help of an
OpenBSD developer I applied a patch and made it work
in OpenBSD 4.7. Both the scanners started to move,
however in the middle of scanning the process froze with
an IO exception. Making sane-backends finding HP F
Deskjet and Pixma needed adjusting kernel.

OpenIndiana printed well to both the multifunctional
printers, but it did not manage scanning with any of the

Figure 1. FreeBSD was scanning easily with the tested printer-
scanner-copier devices

Figure 2. OpenIndiana’s interesting drivers overview tool. Mounted
phone in Nautilus on the left

01/2011 38

LET’S TALK BSD’s and Solaris on the Desktop – Are they ready to serve?

www.bsdmag.org 39

was not able to open X until I chose VESA as the video
driver.

USB
Surprisingly, FreeBSD had serious issues in mounting
USB devices, in fact, I only succeeded with en old
120M flash stick. NetBSD wanted first disklabel run on
the devices, but then it was able to mount everything.
The USB flash and the Phone card worked best
with OpenBSD and (surprisingly) with OpenIndiana,
everything perfectly.

Software match
Desktop environment with auto-mounting
All the BSDs come with pretty uncustomised Gnome
2.6-3.2 and KDE 3.5.10 and also Xfce 4.6 environments,
I have tested them and they work nicely. Although all
the BSDs offer KDE 4.5 at the time of writing, I already
explained why I did not test KDE 4 for the office.
The OpenIndiana, OpenSolaris legacy, comes with a
customised set of icons and nicely tweaked desktop
style, OpenIndiana is the only one that uses Hal to
mount devices by default.

In FreeBSD and NetBSD you can use Hal if you like,
and if you like, you can use the auto-mounting that
Gnome and KDE offer by default, it requires setting
a user-mount option in kernel and defining the mount
points in fstab, then adjusting properties. OpenBSD only
allows the latter way, no Hal in OpenBSD.

Performance
There was an interesting difference in performance.
OpenIndiana was robust (ate about 800MB memory),

but all packages were stable, I haven’t noticed any
crash.

It ran also quite fast, after the boot, which was never-
ending. OpenBSD was incredibly stable, besides running
apps under linux emulation, I noticed no crash, but it
was visibly slower than the other systems. Interestingly
enough, it consumed least memory.

Just under 300 MB while NetBSD and FreeBSD needed
slightly more, about 320-30 MB (may be because of the
Hal?), but these two were the fastest.

FreeBSD happened to crash an application two times
during the testing, NetBSD was, however, and I am
sorry to say that, very unstable in terms of desktop
applications.

OpenOffice
OpenOffice worked for me in all the tested systems, only
while OpenBSD and OpenIndiana had ready a package,
in FreeBSD and NetBSD I had to compile it in ports/
pkgsrc and it took me a while (and about 10GB space),
however that is still fine, since you can compile that once
and then use the package for all other computers at the
office.

There were also a number of other Office applications
ready in packages an ports/pkgsrc, so if you are a friend
of KDE office suite or Gnumeric+Abiword, these packages
are available.

PDF reader
Evince present, kpdf present, Xpdf present, Acrobat
reader under Linux emulation present for the BSDs,
while Evince + native Acrobat ready for OpenIndiana. So,
absolutely no problem.

Figure 3. OpenBSD was able to mount simply everything, while
consuming the least resources

Figure 4. NetBSD announced another failure while I was viewing the
screenshot of a previous one

01/2011 38

LET’S TALK BSD’s and Solaris on the Desktop – Are they ready to serve?

www.bsdmag.org 39

Web browser with a Flash plug-in
That was a difference here. All the systems offer Firefox,
Seamonkey, and other browsers so far fine, however with
Flash plug-in, that was a different story. The OpenIndiana
needed a plug-in to download and place into mozilla/
plugins folder, then it worked natively. NetBSD and
FreeBSD emulate Linux environment and Flash 10 works
fine with nspluginwrapper. OpenBSD used to have a
very well working Flash 7 plug-in in Opera, however now
Opera freezes every 15 seconds and Flash 7 is in various
periods of the year found nowhere, so practically it is
unusable.

Theoretically you could use the free alternatives, gnash
or swfdec plug-in, however neither of them worked reliably
when I was testing them.

There are tools for downloading a Flash video and then
playing it from a command line, but I do not consider this
equal to the working browser plug-in.

Virtualization
(for applications which need other, often closed-source
and evil, operating system environment)

OpenIndiana offers Solaris zones and VirtualBox. I
tested VirtualBox and it worked flawlessly.

FreeBSD offers qemu+kqemu, VirtualBox under emulation
and to some extent Xen, however, that is reported to have
some bugs yet. NetBSD has well working Xen, qemu, and
now also VirtualBox. I tested the firs two and worked well.

OpenBSD has qemu+kqemu but qemu only worked well
when without qemu. It was also painfully slow.

For DOS apps – all BSDs were able to emulate DOS
with Dosbox and run our old company system reliably.

Multimedia
It is not important for the office, but just for general
curiosity- all the BSDs were able to play every
imaginable DVD or video and audio format I tried,

Tabe 1. Overview comparison

FreeBSD 8.1 NetBSD 5.1 OpenBSD 4.8 OpenIndiana build 147 Linux 10/2010

Hardware

Desktop laptop
basic drivers

All worked All worked All worked All worked All worked

Audio+Video All worked All worked All worked With issues All worked

Network drivers All worked All worked All worked All worked All worked

wireless Not working With issues All worked Not working All worked

bluetooth All worked All worked All worked Not working All worked

USB thumb Not working With issues All worked All worked All worked

Phone card Not working With issues All worked All worked All worked

Laser printers All worked All worked All worked With issues All worked

Printer-scanner All worked Printing only Printing only Printing only All worked

Software

Desktop env. Gnome, KDE, KDE
4, Xfce

Gnome, KDE, KDE
4, Xfce

Gnome, KDE, KDE
4, Xfce

Gnome Gnome, KDE, KDE
4, Xfce

Performance Fast, stable Fast, unstable Slow, stable Fast, stable Fast, stable

Ram 315 340 295 780 850

Office suite All worked All worked All worked All worked All worked

PDF All worked All worked All worked All worked All worked

Web browser Firefox, Seamonkey,
Opera, Chrome,
Konqueror, Galeon
.....

Firefox, Seamonkey,
Opera, Chrome,
Konqueror, Galeon
.....

Firefox, Seamonkey,
Opera (fails),
Konqueror, Galeon
.....

Firefox Firefox, Seamonkey,
Opera, Chrome,
Konqueror, Galeon
.....

Flash plug-in All worked All worked Not working All worked All worked

Virtualization Jail, Kqemu,
Virtualbox, Xen?,
dosbox

Qemu, Virtualbox,
Xen, dosbox

Kqemu, dosbox Virtualbox, Zones KVM, Kqemu,
Virtualbox, Xen,
dosbox, dosemu

Multimedia All worked All worked All worked With issues All worked

01/2011 40

LET’S TALK

PETR TOPIARZ
The author owns and runs a small language school, lives in a
small town near Prague in Czech Republic, Europe. He started
with Linux on desktop back in 2005 and with BSDs on servers in
2006, and currently administers four small company networks.
The author simply likes small things.

OpenIndiana had issues with some codecs, but after
talking to the developers on the irc, I found that this is
being worked at currently. Talking about such a fancy
stuff as multimedia, people may be interested in Skype
– it works on FreeBSD. It is claimed to work under zones
in OpenIndiana, it used to work in times of Skype 1.x on
NetBSD (currently it does not), and it is not supported
by OpenBSD on purpose. It is not a secret that skype
works as a spyware, and following a guide published
on the http://forum.skype.com/ I could attest it myself,
we can see that the OpenBSD people know what they
are doing, and at our office there is no place for such an
application.

Conclusion
I would like to remind everyone, that the following
conclusion is not about comparing the BSDs with
Solaris as systems, it is about comparing their USE AS A
DESKTOP IN A SMALL OFFICE.

NetBSD’s pkgsrc collection is also huge, browsers
play flash, documents of all kinds are opened in a while,
virtualization offer is rich, however the problem with
scanners, fact that its version of HPLIP is 8 years behind
and mostly the desktop apps stability issues make it fail
the desktop office task.

OpenIndiana is a new player here, since Solaris started
to develop for i386 platform just a few years ago, but it did
surprisingly well, even if with relatively small repository
at hand, it opened all possible files, played flash through
the browser, and was very stable, handling USB disks
correctly, but a lot of development is unfinished yet, so
access to hardware is limited with the small number of
packages there are, therefore many printers, scanners,
which are crucial for the office work will need more
development. We can see it is only in the beginning of its
way. By the time of writing this article, build 148 was made
available so we can expect some improvement already
now.

OpenBSD has smaller collection of packages, but
contains the most important ones which are up to date
and perfectly stable, and what more, is able to operate
even on machines with very little memory. Has the best
functioning drivers for network and USB. It is just one step
from being able to use the scanners in multifunctional
machines. So, concerning hardware it is very close to
the goal. However its inability to provide a browser with
a flash plug-in and its slugishness, and a slow emulator,
make it loose much of its attractiveness.

FreeBSD offers the largest collection of software
ranging from fancy multimedia and network to developer
tools. The system that worked fast and with only a few

failures and it was the only machine that cooperated
flawlessly with our Printer-Scanner-Copier machines.
The only downside was, however, the lack of support for
USB thumb, phone card and wireless drivers. This result
is probably the closest to what we want. So can we say it
is the winner?

While I would very much like to say so, I can’t. The
winner is clearly Linux at this time, since it supports all
the hardware mentioned and offers the most extensive
software support. I cannot replace our Linux work
stations with unix yet. However I have watched the
development in the last five years and the development
is really fast so while the OpenIndiana baby is doing
its first steps on the right trail, the BSD monsters (and
especially the FreeBSD) may very soon (if not already
next year) beat Linux in this field. Already now, the BSDs
are much better at memory management with weaker
machines.

Finally a little remark, whenever I communicated with
the developers of all four systems, and I really gave
them some time, they were really helpful, open and
communicative. Hats off!

Check out our website and subscribe to Data
Center magazine’s newsletter!

Visit: http://datacentermag.com/newsletter/

Want to have all the issues of Data Center magazine?
Need to keep up with the latest IT news?
Think you’ve got what it takes to cooperate with our team?

http://datacentermag.com/newsletter/

01/2011 42

LET’S TALK

www.bsdmag.org

A common misconception is that gaming and open
source – the two words can never seem to gel
together. BSD users are desktop publishers,

programmers and a lot many other things, but most
emphatically hardly gamers. The myth remains that
the scene in the open source diaspora is bleak when it
comes to gaming. Well, its high-time we broke the myth.
This so-called bleak scene has been showing some
signs of improvement of late. So it seems only logical
that we check out the progress of the BSD world in the
gaming sector, following which, we shall also check out
some Open Source gaming platforms and consoles to
contest the likes of MS Xbox, Sony Play Station and
Nintendo Wii.

Games For The Freedom Lovers
The options are galore when it comes to Open
Source games, and there are some very good
ones that can give the proprietary guys a run
for their money. Following are some of the
lesser known yet must-try gaming options for
BSD users:

Urban Terror
Urban Terror is a first person shooter which is
based on Quake III. In Urban Terror, you are
exposed to the regular hack and slash gaming
along with a few jumps and power slides. The
gameplay is fun and once you are accustomed
to the controls, it can keep you hooked for
hours at length.

The one unique thing about Urban Terror
is the fact that the game aims to be realistic.
You will not find characters with magic potions

or childish supernatural fantasies. On being shot, your
character bleeds and if medical aid (in Multiplayer mode)
is not administered in time, it may prove fatal. Cool, eh?
(see Figure 1).

Urban Terror is available for Linux, Windows and (don’t
blink, its true) Mac. Well, that’s the official compatibility list
(which, as the site itself confesses, isn’t updated often). I
play it under Dragonfly, and it works smooth enough. To
get the game, visit the site at www.urbanterror.info/news/
home.

Scorched 3D
Scorched 3D is a remake of the DOS classic Scorched
Earth. It is a strategy game meant for Windows, Linux,

Games Geeks Play!

In this article, we explore the various gaming options
available for the BSD users.

Figure 1. Urban Terror Gameplay

01/2011 42

LET’S TALK

www.bsdmag.org

BSD, Mac and other UNIX-based machines. It features
online multiplayer mode, superb artillery, a plethora of
characters and scenes. Sounds good? Get the game at
www.scorched3d.co.uk.

Age of Conquest
Age of Conquest is a strategy game in which you
take turns setting up your empire, conquering others’
empires and so on. It supports online multiplayer modes
with over 39,800 registered users, and also runs on
Android and Apple’s iOS. The catch? Well, shell out
$19.99 to play the full version. The game is available at
www.ageofconquest.com.

Savage 2
Savage 2 is a First Person Shooter where you are
in control of several supernatural characters and the
goal is to kill the bad ones. Simple! The graphics are
mind blowing and you’ll keep coming back to it again
and again. The only drawback seems to be a bug
that causes the launch to be sluggish under NetBSD
(Figure 2).

Recently, Savage 2 was sub-divided into two versions:
The Battle for Newerth and A Tortured Soul. To download
the game, visit the website at www.savage2.com Be
warned though, A Tortured Soul is not 100% Open
Source yet.

UFO Alien Invasion
This game is a remake of the DOS game UFO: Enemy
Unknown. It is a strategy game where you have to
establish bases to train your troops and develop modern
weaponry. The storyline is good, and the combat
against aliens is well laid out and quite detailed. The
gameplay is complex and a beginner is sure to be
left dazed at the sheer variety of game modes. The
latest version is 2.3 and it can be downloaded from
www.ufoai.sourceforge.net, see Figure 3.

Want more? Try Battle for Wesnoth, Lips of Suna,
Project X and Forgotten Elements. Who needs Halo!

Open Source Gaming Platforms/consoles
XGameStation
XGameStation is a gaming console cum platform
developed as an open source project. It truly lives up to
the spirit of Open Source in the sense that it is the world’s
only console that is available in a build-it-yourself kit.
Yes, you read it right! You can customize and tweak the
console as much as you like. So this essentially means
freedom from proprietary mumbo-jumbo such as that
available in MS Xbox.

Games Geeks Play!

http://bsdmag.org

01/2011 44

LET’S TALK

XGameStation (XGS) comes in two major variants: Micro
and Pico. The Micro version is unique because it provides
out-of-the-box support for Atari-compatible joysticks and
controllers. The Pico version, on the other hand, is a
stripped down model of Micro XGS with lesser RAM and
Flash capacity. Both of them, however, are build-it-yourself
kits. With the dawn of Sony Play Station and Nintendo Wii,
XGS has suffered obvious setbacks, yet it is available in
most major Asian markets on a severely limited basis.

Pandora
Now this is what I call true gaming, the FOSS way!
Pandora claims to be the most powerful gaming console
ever! And with a 600 MHz+ CPU (that runs UNIX, by the
way), 800x480 16.7 million colors touchscreen LCD and
OpenGL compatible 3D Hardware, it surely has features
to brag about.

Pandora, the handheld gaming console, is developed
by the OpenPandora Project (the name clearly tells
you about it being Open Source). It has high-end
PDA capabilities, and it comes with Angstrom Linux
pre-installed. Wait, the best is yet to come! Don’t like
the default Angstrom Linux? Fret not! Just install your
favorite BSD distro! At present, Pandora supports most
of the major names, including NetBSD, OpenBSD,
FreeBSD and Dragonfly. What’s more! Pandora can
help you access the net using your favorite browser
(Firefox and Chromium come pre-installed). The battery
life is quoted at 10 hours.

You won’t find Pandora in the nearby gadget store. You’ll
have to pre-order at their site www.openpandora.org The
cost is approximately 349$ though with taxes and all it is
likely to reach 380$.

Delta 3D
Delta 3D is an Open Source gaming simulator. It provides
all that one can ask for when it comes to game development
engines – particle editor, world editor, mode creator,
compiler and model viewer. It is released under GNU
LGPL and is freely redistributable. The fully customizable
source code can be had from www.delta3d.org.

The Bottom Line
Recently, Electronic Arts, the gaming stalwart known for
productions such as Need For Speed and FIFA, expressed
the need for a true Open Source gaming world. That sums
it up! FOSS seems to be the most plausible solution to
the ever-intense war between consoles and games, and
when it comes to FOSS, the torch-bearer surely is BSD.
With the advent of freedom in the gaming world, the end-
gamers are sure to expect a treat!

SUFYAN BIN UZAYR
Sufyan is a 20-year old freelance writer, graphic artist,
programmer and photographer based in India. He writes
for several print magazines as well as technology blogs.
He is also the Founder and Editor-in-Chief at http://
www.bravenewworld.co.nr He can be reached at http://
www.sufyan.co.nr Figure 3. UFO Alien Invasion: Detailed Gameplay

Figure 2. A Scene from Savage 2: The Battle for Newerth

http://hakin9.org/en

01/2011 46

LET’S TALK

Since I am the IT guy, I am the one installing and
deciding which open source software will be
installed. It seems that there is no problem for my

younger officemates as they tend to adjust and work their
way around quickly. But for the others, I received a lot of
complaints.

The office suites we use were from Microsoft Office (97,
XP, 2003), OpenOffice.org (2.x, 3.x), IBM Symphony (1.x)
and Google Docs.

Those using OpenOffice.org and IBM Symphony have
been quite comfortable since the interface is almost
the same as Microsoft Office 2003. The only problem
I received from those using these software were some
formatting issues. These were minor formatting issues
which can be resolved by a couple of minutes editing the
document and major formatting issues when the user edit
a file in the new Microsoft document format (docx, xlxs,
pptx), which takes longer to fix.

Now here comes the hard part. How to convince the
not so young employees to use open source office
suites instead of proprietary ones. Now let’s see what
they say about the open source office suites: Since we
use proprietary office suite, we will be having hard time
studying that thing, We have tried that software, but it
just doesn’t work, The feature I’m using in the proprietary
software is not included in that software, so how can
I work?, and The learning curve, the interface, and
everything does not fit my taste.

As you can see, the reasons they give were all not
acceptable. First of all, the new versions of the proprietary
office suite is very different from their versions 7 years ago.
This means that if an employee will use the bleeding-edge
software, he/she will have a harder time in figuring out the
placement of menu and icons. If the open source office

suite doesn’t work, then why would a lot of developers,
institutions (private/government), and schools were
shifting from proprietary to open source software? It just
means that open source works well!

Well not all feature of the proprietary software is included
in the open source counterpart. But take a look at this,
would you pay big bucks for features you don’t use? Not
all employees need the power and feature of proprietary
office suite. The management may work this one out by
identifying the key employees needing a special feature
ONLY available in the proprietary office suite. But I assure
you, most of the functions and features an employee will
need is available and is provided by open source office
suite.

I think that office employees don’t want open source
software since they are afraid to try new things. They are
afraid that they would exert more time in their work using
open source software. But we all know that open source
software really works. What we can do is demonstrate
them the power and functionality of open source software.
We should show them that it really does the job, just like
their proprietary counterparts. We all have our things to
do to be able to convince them using the open source
software. Not only do we help the open souce community,
but we also help our own company in terms of savings by
using Free Software.

Why can’t office employees

I have been working for 6 years now in an office setting.
Since the organization I work for does not have that “big”
funds for purchasing bleeding-edge software, we put our
hands on some open source counterparts of the proprietary
ones.

get along with open source office suites?

JOSHUA EBARVIA
Joshua Ebarvia is a java programmer, systems administrator
and college lecturer. His passion is working and using operating
systems specially UNIX-based and UNIX-cloned systems. You can
reach him at joshua.ebarvia@gmail.com

Next issue is coming in February!

In the next issue:

- Practical Security Auditing with FreeBSD
- Introduction to openssl: Command Line
- Mutt On OS X
- and Other !

http://bsdmag.org

http://www.iXsystems.com

	Cover
	Dear Readers!
	Contents
	Drupal on FreeBSD part 3
	Email MX server in FreeBSD Configuring FreeBSD as a mail MX server with Postfix
	Installing NGINX and PHP 5.3.x on FreeBSD 8.1
	Text Terminal magic with tmux
	Writing ‘bots using XMPP
	How to quickly make a bootable USB stick with FreeBSD
	FreeBSD and simple char device driver for real PCI-hardware
	BSD’s and Solaris on the Desktop Are they ready to serve?
	Games Geeks Play!
	Why can’t office employees get along with open source office suites?

